From 5483d8fec0814e9cc9f5e6fdbb69810f74c76ac9 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 07:09:27 +0800 Subject: [PATCH] next --- code/test_preangles.py | 53 +++++++++++++++++++++++++++++------------------------ 1 files changed, 29 insertions(+), 24 deletions(-) diff --git a/code/test_preangles.py b/code/test_preangles.py index cfee8d1..9cdc8e3 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,15 +13,7 @@ import torchvision import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils +import datasets, hopenet, utils def parse_args(): """Parse input arguments.""" @@ -39,6 +36,13 @@ return args +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + model_dict.update(snapshot) + model.load_state_dict(model_dict) + if __name__ == '__main__': args = parse_args() @@ -46,17 +50,14 @@ gpu = args.gpu_id snapshot_path = args.snapshot - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + # ResNet50 structure + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' # Load snapshot saved_state_dict = torch.load(snapshot_path) model.load_state_dict(saved_state_dict) + # load_filtered_state_dict(model, saved_state_dict) print 'Loading data.' @@ -64,18 +65,20 @@ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - if args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000_ds': - pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, - transformations) + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: @@ -102,9 +105,12 @@ l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() label_pitch = cont_labels[:,1].float() label_roll = cont_labels[:,2].float() @@ -130,8 +136,7 @@ pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) - # Save images with pose cube. - # TODO: fix for larger batch size + # Save first image in batch with pose cube or axis. if args.save_viz: name = name[0] if args.dataset == 'BIWI': -- Gitblit v1.8.0