From 5483d8fec0814e9cc9f5e6fdbb69810f74c76ac9 Mon Sep 17 00:00:00 2001
From: natanielruiz <nruiz9@gatech.edu>
Date: 星期一, 30 十月 2017 07:09:27 +0800
Subject: [PATCH] next

---
 code/test_preangles.py |   53 +++++++++++++++++++++++++++++------------------------
 1 files changed, 29 insertions(+), 24 deletions(-)

diff --git a/code/test_preangles.py b/code/test_preangles.py
index cfee8d1..9cdc8e3 100644
--- a/code/test_preangles.py
+++ b/code/test_preangles.py
@@ -1,4 +1,9 @@
+import sys, os, argparse
+
 import numpy as np
+import cv2
+import matplotlib.pyplot as plt
+
 import torch
 import torch.nn as nn
 from torch.autograd import Variable
@@ -8,15 +13,7 @@
 import torchvision
 import torch.nn.functional as F
 
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import utils
+import datasets, hopenet, utils
 
 def parse_args():
     """Parse input arguments."""
@@ -39,6 +36,13 @@
 
     return args
 
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    model_dict.update(snapshot)
+    model.load_state_dict(model_dict)
+
 if __name__ == '__main__':
     args = parse_args()
 
@@ -46,17 +50,14 @@
     gpu = args.gpu_id
     snapshot_path = args.snapshot
 
-    # ResNet101 with 3 outputs.
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    # ResNet50 structure
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
 
     print 'Loading snapshot.'
     # Load snapshot
     saved_state_dict = torch.load(snapshot_path)
     model.load_state_dict(saved_state_dict)
+    # load_filtered_state_dict(model, saved_state_dict)
 
     print 'Loading data.'
 
@@ -64,18 +65,20 @@
     transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    if args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
+    if args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP_random_ds':
+        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW2000_ds':
-        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
-                                transformations)
+        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'BIWI':
         pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW':
         pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
@@ -102,9 +105,12 @@
 
     l1loss = torch.nn.L1Loss(size_average=False)
 
+
+
     for i, (images, labels, cont_labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
         total += cont_labels.size(0)
+
         label_yaw = cont_labels[:,0].float()
         label_pitch = cont_labels[:,1].float()
         label_roll = cont_labels[:,2].float()
@@ -130,8 +136,7 @@
         pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
         roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
 
-        # Save images with pose cube.
-        # TODO: fix for larger batch size
+        # Save first image in batch with pose cube or axis.
         if args.save_viz:
             name = name[0]
             if args.dataset == 'BIWI':

--
Gitblit v1.8.0