From 5c5e7f80bf9b560763a5ee35cd5d01ae1ec60a84 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期二, 11 七月 2017 11:21:21 +0800
Subject: [PATCH] next

---
 /dev/null |   82 -----------------------------------------
 1 files changed, 0 insertions(+), 82 deletions(-)

diff --git a/code/test.py~ b/code/test.py~
deleted file mode 100644
index fa2787b..0000000
--- a/code/test.py~
+++ /dev/null
@@ -1,82 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torch.backends.cudnn as cudnn
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-from datasets import AFLW2000
-import hopenet
-import utils
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
-          default='', type=str)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=1, type=int)
-
-    args = parser.parse_args()
-
-    return args
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    batch_size = 1
-    gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
-
-    model = hopenet.Simple_CNN()
-
-    print 'Loading snapshot.'
-    # Load snapshot
-    saved_state_dict = torch.load(snapshot_path)
-    model.load_state_dict(saved_state_dict)
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()])
-
-    pose_dataset = AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
-    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-
-    print 'Ready to test network.'
-
-    # Test the Model
-    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    error = .0
-    total = 0
-    for i, (images, labels) in enumerate(test_loader):
-        images = Variable(images).cuda(gpu)
-        labels = Variable(labels).cuda(gpu)
-        outputs = model(images)
-        _, predicted = torch.max(outputs.data, 1)
-        total += labels.size(0)
-        # TODO: There are more efficient ways.
-        for idx in xrange(len(outputs)):
-            error += utils.mse_loss(outputs[idx], labels[idx])
-
-
-    print('Test MSE error of the model on the ' + str(total) +
-    ' test images: %.4f' % (error / total))

--
Gitblit v1.8.0