From 5c5e7f80bf9b560763a5ee35cd5d01ae1ec60a84 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 11 七月 2017 11:21:21 +0800 Subject: [PATCH] next --- /dev/null | 82 ----------------------------------------- 1 files changed, 0 insertions(+), 82 deletions(-) diff --git a/code/test.py~ b/code/test.py~ deleted file mode 100644 index fa2787b..0000000 --- a/code/test.py~ +++ /dev/null @@ -1,82 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -from datasets import AFLW2000 -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - batch_size = 1 - gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - - model = hopenet.Simple_CNN() - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()]) - - pose_dataset = AFLW2000(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - error = .0 - total = 0 - for i, (images, labels) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - labels = Variable(labels).cuda(gpu) - outputs = model(images) - _, predicted = torch.max(outputs.data, 1) - total += labels.size(0) - # TODO: There are more efficient ways. - for idx in xrange(len(outputs)): - error += utils.mse_loss(outputs[idx], labels[idx]) - - - print('Test MSE error of the model on the ' + str(total) + - ' test images: %.4f' % (error / total)) -- Gitblit v1.8.0