From 653b3608ebe6272510b4c66f445f6f552fdc9ec9 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期一, 11 九月 2017 05:53:10 +0800 Subject: [PATCH] Starting serious experiment without regression or iterative finetuning --- code/train.py | 78 ++++++---- code/test_AFLW.py | 3 code/hopenet.py | 6 code/train_preangles.py | 265 +++++++++++++++++++++++++++++++++++++ code/test.py | 13 - code/test_preangles.py | 2 6 files changed, 319 insertions(+), 48 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 274044f..5bac804 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -88,12 +88,6 @@ return nn.Sequential(*layers) - def get_expectation(angle): - angle_pred = F.softmax(angle) - - angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1) - return angle_pred - def forward(self, x): x = self.conv1(x) x = self.bn1(x) diff --git a/code/test.py b/code/test.py index 8e8fe50..b01d07e 100644 --- a/code/test.py +++ b/code/test.py @@ -27,7 +27,7 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) @@ -43,7 +43,7 @@ cudnn.enabled = True gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + snapshot_path = args.snapshot # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) @@ -58,9 +58,6 @@ model.load_state_dict(saved_state_dict) print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) transformations = transforms.Compose([transforms.Scale(224), transforms.RandomCrop(224), transforms.ToTensor(), @@ -101,9 +98,9 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[:,0].cpu().data - pitch = angles[:,1].cpu().data - roll = angles[:,2].cpu().data + yaw = angles[0][:,0].cpu().data + pitch = angles[0][:,1].cpu().data + roll = angles[0][:,2].cpu().data # Mean absolute error yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) diff --git a/code/test_AFLW.py b/code/test_AFLW.py index 1e1dff3..f61ab98 100644 --- a/code/test_AFLW.py +++ b/code/test_AFLW.py @@ -60,7 +60,8 @@ print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor()]) + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) diff --git a/code/test_preangles.py b/code/test_preangles.py index 67e4744..4aedfd8 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -43,7 +43,7 @@ cudnn.enabled = True gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + snapshot_path = args.snapshot # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) diff --git a/code/train.py b/code/train.py index 826793d..e339b10 100644 --- a/code/train.py +++ b/code/train.py @@ -43,6 +43,9 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.001, type=float) args = parser.parse_args() return args @@ -51,26 +54,37 @@ b = [] b.append(model.conv1) b.append(model.bn1) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] b.append(model.layer1) b.append(model.layer2) b.append(model.layer3) b.append(model.layer4) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. +def get_fc_params(model): b = [] b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) b.append(model.fc_finetune) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org @@ -104,11 +118,7 @@ print 'Loading data.' - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), - # transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(250), + transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) @@ -120,17 +130,19 @@ num_workers=2) model.cuda(gpu) + softmax = nn.Softmax() criterion = nn.CrossEntropyLoss().cuda() reg_criterion = nn.MSELoss().cuda() # Regression loss coefficient - alpha = 0.01 + alpha = 0.00 idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 2}], + lr = args.lr) print 'Ready to train network.' @@ -153,24 +165,26 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + # print yaw_predicted, label_yaw.float(), loss_reg_yaw # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] + # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -180,13 +194,13 @@ %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') print 'Second phase of training (finetuning layer).' for epoch in range(num_epochs_ft): @@ -208,9 +222,9 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) @@ -238,14 +252,14 @@ %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs_ft - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') diff --git a/code/train_preangles.py b/code/train_preangles.py new file mode 100644 index 0000000..65a2017 --- /dev/null +++ b/code/train_preangles.py @@ -0,0 +1,265 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torchvision +import torch.backends.cudnn as cudnn +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import torch.utils.model_zoo as model_zoo + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', + default=5, type=int) + parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', + default=5, type=int) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=16, type=int) + parser.add_argument('--lr', dest='lr', help='Base learning rate.', + default=0.001, type=float) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.001, type=float) + args = parser.parse_args() + return args + +def get_ignored_params(model): + # Generator function that yields ignored params. + b = [] + b.append(model.conv1) + b.append(model.bn1) + b.append(model.fc_finetune) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] + b.append(model.layer1) + b.append(model.layer2) + b.append(model.layer3) + b.append(model.layer4) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_fc_params(model): + b = [] + b.append(model.fc_yaw) + b.append(model.fc_pitch) + b.append(model.fc_roll) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param + +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + # 1. filter out unnecessary keys + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + # 2. overwrite entries in the existing state dict + model_dict.update(snapshot) + # 3. load the new state dict + model.load_state_dict(model_dict) + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + num_epochs = args.num_epochs + num_epochs_ft = args.num_epochs_ft + batch_size = args.batch_size + gpu = args.gpu_id + + if not os.path.exists('output/snapshots'): + os.makedirs('output/snapshots') + + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(240), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, + transformations) + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + shuffle=True, + num_workers=2) + + model.cuda(gpu) + softmax = nn.Softmax() + criterion = nn.CrossEntropyLoss().cuda() + reg_criterion = nn.MSELoss().cuda() + # Regression loss coefficient + alpha = 0.00 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) + + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 2}], + lr = args.lr) + + print 'Ready to train network.' + + print 'First phase of training.' + for epoch in range(num_epochs): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # print yaw_predicted, label_yaw.float(), loss_reg_yaw + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + loss_seq = [loss_yaw, loss_pitch, loss_roll] + # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') + + print 'Second phase of training (finetuning layer).' + for epoch in range(num_epochs_ft): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_angles = Variable(labels[:,:3].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + # Finetuning loss + loss_angles = reg_criterion(angles[0], label_angles.float()) + + loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' + %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') + + + # Save the final Trained Model + torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0