From 653b3608ebe6272510b4c66f445f6f552fdc9ec9 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期一, 11 九月 2017 05:53:10 +0800
Subject: [PATCH] Starting serious experiment without regression or iterative finetuning

---
 code/train.py           |   78 ++++++----
 code/test_AFLW.py       |    3 
 code/hopenet.py         |    6 
 code/train_preangles.py |  265 +++++++++++++++++++++++++++++++++++++
 code/test.py            |   13 -
 code/test_preangles.py  |    2 
 6 files changed, 319 insertions(+), 48 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index 274044f..5bac804 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -88,12 +88,6 @@
 
         return nn.Sequential(*layers)
 
-    def get_expectation(angle):
-        angle_pred = F.softmax(angle)
-
-        angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1)
-        return angle_pred
-
     def forward(self, x):
         x = self.conv1(x)
         x = self.bn1(x)
diff --git a/code/test.py b/code/test.py
index 8e8fe50..b01d07e 100644
--- a/code/test.py
+++ b/code/test.py
@@ -27,7 +27,7 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
           default='', type=str)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=1, type=int)
@@ -43,7 +43,7 @@
 
     cudnn.enabled = True
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
@@ -58,9 +58,6 @@
     model.load_state_dict(saved_state_dict)
 
     print 'Loading data.'
-
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
 
     transformations = transforms.Compose([transforms.Scale(224),
     transforms.RandomCrop(224), transforms.ToTensor(),
@@ -101,9 +98,9 @@
         label_roll = labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[:,0].cpu().data
-        pitch = angles[:,1].cpu().data
-        roll = angles[:,2].cpu().data
+        yaw = angles[0][:,0].cpu().data
+        pitch = angles[0][:,1].cpu().data
+        roll = angles[0][:,2].cpu().data
 
         # Mean absolute error
         yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
diff --git a/code/test_AFLW.py b/code/test_AFLW.py
index 1e1dff3..f61ab98 100644
--- a/code/test_AFLW.py
+++ b/code/test_AFLW.py
@@ -60,7 +60,8 @@
     print 'Loading data.'
 
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor()])
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
     pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
                                 transformations)
diff --git a/code/test_preangles.py b/code/test_preangles.py
index 67e4744..4aedfd8 100644
--- a/code/test_preangles.py
+++ b/code/test_preangles.py
@@ -43,7 +43,7 @@
 
     cudnn.enabled = True
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
diff --git a/code/train.py b/code/train.py
index 826793d..e339b10 100644
--- a/code/train.py
+++ b/code/train.py
@@ -43,6 +43,9 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
+    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
+    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
+          default=0.001, type=float)
     args = parser.parse_args()
     return args
 
@@ -51,26 +54,37 @@
     b = []
     b.append(model.conv1)
     b.append(model.bn1)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
     b.append(model.layer1)
     b.append(model.layer2)
     b.append(model.layer3)
     b.append(model.layer4)
     for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                yield k
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
 
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
+def get_fc_params(model):
     b = []
     b.append(model.fc_yaw)
     b.append(model.fc_pitch)
     b.append(model.fc_roll)
     b.append(model.fc_finetune)
     for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                    yield k
+        for module_name, module in b[i].named_modules():
+            for name, param in module.named_parameters():
+                yield param
 
 def load_filtered_state_dict(model, snapshot):
     # By user apaszke from discuss.pytorch.org
@@ -104,11 +118,7 @@
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    #                                       transforms.RandomCrop(224),
-    #                                       transforms.ToTensor()])
-
-    transformations = transforms.Compose([transforms.Scale(250),
+    transformations = transforms.Compose([transforms.Scale(240),
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
@@ -120,17 +130,19 @@
                                                num_workers=2)
 
     model.cuda(gpu)
+    softmax = nn.Softmax()
     criterion = nn.CrossEntropyLoss().cuda()
     reg_criterion = nn.MSELoss().cuda()
     # Regression loss coefficient
-    alpha = 0.01
+    alpha = 0.00
 
     idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
 
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
-                                  lr = args.lr)
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
+                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                   lr = args.lr)
 
     print 'Ready to train network.'
 
@@ -153,24 +165,26 @@
             loss_roll = criterion(pre_roll, label_roll)
 
             # MSE loss
-            yaw_predicted = F.softmax(pre_yaw)
-            pitch_predicted = F.softmax(pre_pitch)
-            roll_predicted = F.softmax(pre_roll)
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
 
             loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
             loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
             loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
 
+            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
             loss_pitch += alpha * loss_reg_pitch
             loss_roll += alpha * loss_reg_roll
 
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -180,13 +194,13 @@
                        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
                 # if epoch == 0:
                 #     torch.save(model.state_dict(),
-                #     'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl')
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl')
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
 
     print 'Second phase of training (finetuning layer).'
     for epoch in range(num_epochs_ft):
@@ -208,9 +222,9 @@
             loss_roll = criterion(pre_roll, label_roll)
 
             # MSE loss
-            yaw_predicted = F.softmax(pre_yaw)
-            pitch_predicted = F.softmax(pre_pitch)
-            roll_predicted = F.softmax(pre_roll)
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
 
             yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
             pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
@@ -238,14 +252,14 @@
                        %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
                 # if epoch == 0:
                 #     torch.save(model.state_dict(),
-                #     'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl')
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
 
 
     # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl')
+    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')
diff --git a/code/train_preangles.py b/code/train_preangles.py
new file mode 100644
index 0000000..65a2017
--- /dev/null
+++ b/code/train_preangles.py
@@ -0,0 +1,265 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torchvision
+import torch.backends.cudnn as cudnn
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import torch.utils.model_zoo as model_zoo
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+}
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
+          default=5, type=int)
+    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
+          default=5, type=int)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=16, type=int)
+    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
+          default=0.001, type=float)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
+    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
+          default=0.001, type=float)
+    args = parser.parse_args()
+    return args
+
+def get_ignored_params(model):
+    # Generator function that yields ignored params.
+    b = []
+    b.append(model.conv1)
+    b.append(model.bn1)
+    b.append(model.fc_finetune)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
+    b.append(model.layer1)
+    b.append(model.layer2)
+    b.append(model.layer3)
+    b.append(model.layer4)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_fc_params(model):
+    b = []
+    b.append(model.fc_yaw)
+    b.append(model.fc_pitch)
+    b.append(model.fc_roll)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            for name, param in module.named_parameters():
+                yield param
+
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    # 1. filter out unnecessary keys
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    # 2. overwrite entries in the existing state dict
+    model_dict.update(snapshot)
+    # 3. load the new state dict
+    model.load_state_dict(model_dict)
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    num_epochs = args.num_epochs
+    num_epochs_ft = args.num_epochs_ft
+    batch_size = args.batch_size
+    gpu = args.gpu_id
+
+    if not os.path.exists('output/snapshots'):
+        os.makedirs('output/snapshots')
+
+    # ResNet101 with 3 outputs
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(240),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
+                                transformations)
+    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=batch_size,
+                                               shuffle=True,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+    softmax = nn.Softmax()
+    criterion = nn.CrossEntropyLoss().cuda()
+    reg_criterion = nn.MSELoss().cuda()
+    # Regression loss coefficient
+    alpha = 0.00
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
+
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
+                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                   lr = args.lr)
+
+    print 'Ready to train network.'
+
+    print 'First phase of training.'
+    for epoch in range(num_epochs):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images.cuda(gpu))
+            label_yaw = Variable(labels[:,0].cuda(gpu))
+            label_pitch = Variable(labels[:,1].cuda(gpu))
+            label_roll = Variable(labels[:,2].cuda(gpu))
+
+            optimizer.zero_grad()
+            model.zero_grad()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+
+            # Cross entropy loss
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
+
+            # MSE loss
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
+
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+
+            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
+            # Total loss
+            loss_yaw += alpha * loss_reg_yaw
+            loss_pitch += alpha * loss_reg_pitch
+            loss_roll += alpha * loss_reg_roll
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
+                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
+
+    print 'Second phase of training (finetuning layer).'
+    for epoch in range(num_epochs_ft):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images.cuda(gpu))
+            label_yaw = Variable(labels[:,0].cuda(gpu))
+            label_pitch = Variable(labels[:,1].cuda(gpu))
+            label_roll = Variable(labels[:,2].cuda(gpu))
+            label_angles = Variable(labels[:,:3].cuda(gpu))
+
+            optimizer.zero_grad()
+            model.zero_grad()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+
+            # Cross entropy loss
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
+
+            # MSE loss
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
+
+            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+
+            # Total loss
+            loss_yaw += alpha * loss_reg_yaw
+            loss_pitch += alpha * loss_reg_pitch
+            loss_roll += alpha * loss_reg_roll
+
+            # Finetuning loss
+            loss_angles = reg_criterion(angles[0], label_angles.float())
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
+                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
+
+
+    # Save the final Trained Model
+    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0