From 6664c6d52fad58e396861946a3bed7d5afc4d44d Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期五, 07 七月 2017 10:53:52 +0800
Subject: [PATCH] Training for hopenet works.

---
 code/datasets.py |   49 +++++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 45 insertions(+), 4 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 030059f..3750e71 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -84,10 +84,51 @@
 
         # We get the pose in radians
         pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
-        # And convert to positive degrees.
-        pose = pose * 180 / np.pi + 90
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
 
-        label = torch.FloatTensor(pose)
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
+class AFLW2000_binned(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert('RGB')
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
+        # And convert to degrees.
+        pitch, yaw, roll = pose * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1)
+        binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1)
+        binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1)
+
+        label = binned_yaw, binned_pitch, binned_roll
 
         if self.transform is not None:
             img = self.transform(img)
@@ -95,7 +136,7 @@
         return img, label, self.X_train[index]
 
     def __len__(self):
-        # 122,450
+        # 2,000
         return self.length
 
 def get_list_from_filenames(file_path):

--
Gitblit v1.8.0