From 6664c6d52fad58e396861946a3bed7d5afc4d44d Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期五, 07 七月 2017 10:53:52 +0800
Subject: [PATCH] Training for hopenet works.

---
 code/train_resnet_bins.py |   94 +++++++++++++++++++++++++++++++++++-----------
 1 files changed, 71 insertions(+), 23 deletions(-)

diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py
index f2ec5f2..1bbf5be 100644
--- a/code/train_resnet_bins.py
+++ b/code/train_resnet_bins.py
@@ -13,8 +13,17 @@
 import os
 import argparse
 
-from datasets import Pose_300W_LP
+import datasets
 import hopenet
+import torch.utils.model_zoo as model_zoo
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+}
 
 def parse_args():
     """Parse input arguments."""
@@ -36,6 +45,41 @@
 
     return args
 
+def get_ignored_params(model):
+    # Generator function that yields ignored params.
+    b = []
+    b.append(model.conv1)
+    b.append(model.bn1)
+    b.append(model.layer1)
+    b.append(model.layer2)
+    b.append(model.layer3)
+    b.append(model.layer4)
+    for i in range(len(b)):
+        for j in b[i].modules():
+            for k in j.parameters():
+                yield k
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
+    b.append(model.fc_yaw)
+    b.append(model.fc_pitch)
+    b.append(model.fc_roll)
+    for i in range(len(b)):
+        for j in b[i].modules():
+            for k in j.parameters():
+                    yield k
+
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    # 1. filter out unnecessary keys
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    # 2. overwrite entries in the existing state dict
+    model_dict.update(snapshot)
+    # 3. load the new state dict
+    model.load_state_dict(model_dict)
+
 if __name__ == '__main__':
     args = parse_args()
 
@@ -47,21 +91,16 @@
     if not os.path.exists('output/snapshots'):
         os.makedirs('output/snapshots')
 
-    model = torchvision.models.resnet18(pretrained=True)
-    for param in model.parameters():
-        param.requires_grad = False
-    # Parameters of newly constructed modules have requires_grad=True by default
-    num_ftrs = model.fc.in_features
-    model.fc_pitch = nn.Linear(num_ftrs, 3)
-    model.fc_yaw = nn.Linear(num_ftrs, 3)
-    model.fc_roll = nn.Linear(num_ftrs, )
-
+    # ResNet18 with 3 outputs.
+    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18']))
+    
     print 'Loading data.'
 
-    transformations = transforms.Compose([transforms.Scale(230),transforms.RandomCrop(224),
+    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
                                           transforms.ToTensor()])
 
-    pose_dataset = Pose_300W_LP(args.data_dir, args.filename_list,
+    pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list,
                                 transformations)
     train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=batch_size,
@@ -69,31 +108,40 @@
                                                num_workers=2)
 
     model.cuda(gpu)
-    criterion = nn.MSELoss(size_average = True)
-    optimizer = torch.optim.Adam(model.fc.parameters(), lr = args.lr)
+    criterion = nn.CrossEntropyLoss()
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr}],
+                                  lr = args.lr)
 
     print 'Ready to train network.'
 
     for epoch in range(num_epochs):
-        for i, (images, labels) in enumerate(train_loader):
+        for i, (images, labels, name) in enumerate(train_loader):
             images = Variable(images).cuda(gpu)
-            labels = Variable(labels).cuda(gpu)
+            label_yaw = Variable(labels[:,0]).cuda(gpu)
+            label_pitch = Variable(labels[:,1]).cuda(gpu)
+            label_roll = Variable(labels[:,2]).cuda(gpu)
 
             optimizer.zero_grad()
-            outputs = model(images)
-            loss = criterion(outputs, labels)
-            loss.backward()
+            yaw, pitch, roll = model(images)
+            loss_yaw = criterion(yaw, label_yaw)
+            loss_pitch = criterion(pitch, label_pitch)
+            loss_roll = criterion(roll, label_roll)
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
 
             if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
-                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0]))
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
+                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
 
         # Save models at even numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs - 1:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl')
+            'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl')
 
     # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl')
+    torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl')

--
Gitblit v1.8.0