From 67b572c773e69c769be6fb08b27b35b18c0cbbdb Mon Sep 17 00:00:00 2001 From: Nataniel Ruiz <nruiz9@gatech.edu> Date: 星期一, 04 三月 2019 08:14:25 +0800 Subject: [PATCH] Update README.md --- code/train_alexnet.py | 24 +++++++++++++++--------- 1 files changed, 15 insertions(+), 9 deletions(-) diff --git a/code/train_alexnet.py b/code/train_alexnet.py index 9254ee7..0c6c9db 100644 --- a/code/train_alexnet.py +++ b/code/train_alexnet.py @@ -129,6 +129,9 @@ # Regression loss coefficient alpha = args.alpha + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, {'params': get_fc_params(model), 'lr': args.lr * 5}], @@ -150,17 +153,21 @@ label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) # Forward pass - yaw, pitch, roll, angles = model(images) + pre_yaw, pre_pitch, pre_roll = model(images) # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = angles[:,0] - pitch_predicted = angles[:,1] - roll_predicted = angles[:,2] + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) @@ -172,8 +179,7 @@ loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - optimizer.zero_grad() + grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() -- Gitblit v1.8.0