From 6dd2ff502947ec809d420e2baefa023d821a8bb1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 07 九月 2017 07:26:35 +0800
Subject: [PATCH] Omg

---
 code/datasets.py |  132 ++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 120 insertions(+), 12 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 4594cbc..9a4aeb5 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -38,11 +38,11 @@
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        k = 0.15
-        x_min -= k * abs(x_max - x_min)
-        y_min -= 4 * k * abs(y_max - y_min)
-        x_max += k * abs(x_max - x_min)
-        y_max += 0.4 * k * abs(y_max - y_min)
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
@@ -51,6 +51,24 @@
         pitch = pose[0] * 180 / np.pi
         yaw = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Rotate?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            if roll >= 0:
+                img = img.rotate(60)
+                roll -= 60
+            else:
+                img = img.rotate(-60)
+                roll += 60
+
         # Bin values
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
@@ -94,6 +112,13 @@
         y_min = min(pt2d[1,:])
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
+
+        # k = 0.35
+        # x_min -= 0.6 * k * abs(x_max - x_min)
+        # y_min -= 2 * k * abs(y_max - y_min)
+        # x_max += 0.6 * k * abs(x_max - x_min)
+        # y_max += 0.6 * k * abs(y_max - y_min)
+        # img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         k = 0.15
         x_min -= k * abs(x_max - x_min)
@@ -149,8 +174,8 @@
         pitch = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
         # Something weird with the roll in AFLW
-        if yaw < 0:
-            roll *= -1
+        # if yaw < 0:
+        roll *= -1
         # Bin values
         bins = np.array(range(-99, 102, 3))
         labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
@@ -242,11 +267,11 @@
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        k = 0.15
-        x_min -= k * abs(x_max - x_min)
-        y_min -= 4 * k * abs(y_max - y_min)
-        x_max += k * abs(x_max - x_min)
-        y_max += 0.4 * k * abs(y_max - y_min)
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
@@ -276,6 +301,89 @@
         # 122,450
         return self.length
 
+class BIWI(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext))
+        img = img.convert(self.image_mode)
+        pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext)
+
+        y_train_list = self.y_train[index].split('/')
+        bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext)
+
+        # Load bounding box
+        bbox = open(bbox_path, 'r')
+        line = bbox.readline().split(' ')
+        if len(line) < 4:
+            x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1]
+        else:
+            x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])]
+        bbox.close()
+
+        # Load pose in degrees
+        pose_annot = open(pose_path, 'r')
+        R = []
+        for line in pose_annot:
+            line = line.strip('\n').split(' ')
+            l = []
+            if line[0] != '':
+                for nb in line:
+                    if nb == '':
+                        continue
+                    l.append(float(nb))
+                R.append(l)
+
+        R = np.array(R)
+        T = R[3,:]
+        R = R[:3,:]
+        pose_annot.close()
+
+        roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
+        yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+
+        # Loosely crop face
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Flip?
+        # rnd = np.random.random_sample()
+        # if rnd < 0.5:
+        #     yaw = -yaw
+        #     roll = -roll
+        #     img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(binned_pose)
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 15,667
+        return self.length
+
 
 def get_list_from_filenames(file_path):
     # input:    relative path to .txt file with file names

--
Gitblit v1.8.0