From 6dd2ff502947ec809d420e2baefa023d821a8bb1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 07 九月 2017 07:26:35 +0800
Subject: [PATCH] Omg

---
 code/hopenet.py |  149 +++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 149 insertions(+), 0 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index e6f8f50..1b94fa1 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -2,6 +2,7 @@
 import torch.nn as nn
 import torchvision.datasets as dsets
 from torch.autograd import Variable
+import math
 
 # CNN Model (2 conv layer)
 class Simple_CNN(nn.Module):
@@ -37,3 +38,151 @@
         out = out.view(out.size(0), -1)
         out = self.fc(out)
         return out
+
+class Hopenet(nn.Module):
+    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
+    def __init__(self, block, layers, num_bins):
+        self.inplanes = 64
+        super(Hopenet, self).__init__()
+        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
+                               bias=False)
+        self.bn1 = nn.BatchNorm2d(64)
+        self.relu = nn.ReLU(inplace=True)
+        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+        self.layer1 = self._make_layer(block, 64, layers[0])
+        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
+        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
+        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
+        self.avgpool = nn.AvgPool2d(7)
+        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
+        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
+        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
+
+        for m in self.modules():
+            if isinstance(m, nn.Conv2d):
+                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+                m.weight.data.normal_(0, math.sqrt(2. / n))
+            elif isinstance(m, nn.BatchNorm2d):
+                m.weight.data.fill_(1)
+                m.bias.data.zero_()
+
+    def _make_layer(self, block, planes, blocks, stride=1):
+        downsample = None
+        if stride != 1 or self.inplanes != planes * block.expansion:
+            downsample = nn.Sequential(
+                nn.Conv2d(self.inplanes, planes * block.expansion,
+                          kernel_size=1, stride=stride, bias=False),
+                nn.BatchNorm2d(planes * block.expansion),
+            )
+
+        layers = []
+        layers.append(block(self.inplanes, planes, stride, downsample))
+        self.inplanes = planes * block.expansion
+        for i in range(1, blocks):
+            layers.append(block(self.inplanes, planes))
+
+        return nn.Sequential(*layers)
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = self.bn1(x)
+        x = self.relu(x)
+        x = self.maxpool(x)
+
+        x = self.layer1(x)
+        x = self.layer2(x)
+        x = self.layer3(x)
+        x = self.layer4(x)
+
+        x = self.avgpool(x)
+        x = x.view(x.size(0), -1)
+        yaw = self.fc_yaw(x)
+        pitch = self.fc_pitch(x)
+        roll = self.fc_roll(x)
+
+        return yaw, pitch, roll
+
+class Hopenet_shape(nn.Module):
+    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
+    def __init__(self, block, layers, num_bins, shape_bins):
+        self.inplanes = 64
+        super(Hopenet_shape, self).__init__()
+        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
+                               bias=False)
+        self.bn1 = nn.BatchNorm2d(64)
+        self.relu = nn.ReLU(inplace=True)
+        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+        self.layer1 = self._make_layer(block, 64, layers[0])
+        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
+        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
+        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
+        self.avgpool = nn.AvgPool2d(7)
+        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
+        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
+        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
+        self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins)
+        self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins)
+
+        for m in self.modules():
+            if isinstance(m, nn.Conv2d):
+                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+                m.weight.data.normal_(0, math.sqrt(2. / n))
+            elif isinstance(m, nn.BatchNorm2d):
+                m.weight.data.fill_(1)
+                m.bias.data.zero_()
+
+    def _make_layer(self, block, planes, blocks, stride=1):
+        downsample = None
+        if stride != 1 or self.inplanes != planes * block.expansion:
+            downsample = nn.Sequential(
+                nn.Conv2d(self.inplanes, planes * block.expansion,
+                          kernel_size=1, stride=stride, bias=False),
+                nn.BatchNorm2d(planes * block.expansion),
+            )
+
+        layers = []
+        layers.append(block(self.inplanes, planes, stride, downsample))
+        self.inplanes = planes * block.expansion
+        for i in range(1, blocks):
+            layers.append(block(self.inplanes, planes))
+
+        return nn.Sequential(*layers)
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = self.bn1(x)
+        x = self.relu(x)
+        x = self.maxpool(x)
+
+        x = self.layer1(x)
+        x = self.layer2(x)
+        x = self.layer3(x)
+        x = self.layer4(x)
+
+        x = self.avgpool(x)
+        x = x.view(x.size(0), -1)
+        yaw = self.fc_yaw(x)
+        pitch = self.fc_pitch(x)
+        roll = self.fc_roll(x)
+
+        shape = []
+        shape.append(self.fc_shape_0(x))
+        shape.append(self.fc_shape_1(x))
+        shape.append(self.fc_shape_2(x))
+        shape.append(self.fc_shape_3(x))
+        shape.append(self.fc_shape_4(x))
+        shape.append(self.fc_shape_5(x))
+        shape.append(self.fc_shape_6(x))
+        shape.append(self.fc_shape_7(x))
+        shape.append(self.fc_shape_8(x))
+        shape.append(self.fc_shape_9(x))
+
+        return yaw, pitch, roll, shape

--
Gitblit v1.8.0