From 6dd2ff502947ec809d420e2baefa023d821a8bb1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 07 九月 2017 07:26:35 +0800 Subject: [PATCH] Omg --- code/hopenet.py | 149 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 149 insertions(+), 0 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index e6f8f50..1b94fa1 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -2,6 +2,7 @@ import torch.nn as nn import torchvision.datasets as dsets from torch.autograd import Variable +import math # CNN Model (2 conv layer) class Simple_CNN(nn.Module): @@ -37,3 +38,151 @@ out = out.view(out.size(0), -1) out = self.fc(out) return out + +class Hopenet(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins): + self.inplanes = 64 + super(Hopenet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + yaw = self.fc_yaw(x) + pitch = self.fc_pitch(x) + roll = self.fc_roll(x) + + return yaw, pitch, roll + +class Hopenet_shape(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins, shape_bins): + self.inplanes = 64 + super(Hopenet_shape, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + yaw = self.fc_yaw(x) + pitch = self.fc_pitch(x) + roll = self.fc_roll(x) + + shape = [] + shape.append(self.fc_shape_0(x)) + shape.append(self.fc_shape_1(x)) + shape.append(self.fc_shape_2(x)) + shape.append(self.fc_shape_3(x)) + shape.append(self.fc_shape_4(x)) + shape.append(self.fc_shape_5(x)) + shape.append(self.fc_shape_6(x)) + shape.append(self.fc_shape_7(x)) + shape.append(self.fc_shape_8(x)) + shape.append(self.fc_shape_9(x)) + + return yaw, pitch, roll, shape -- Gitblit v1.8.0