From 6dd2ff502947ec809d420e2baefa023d821a8bb1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 07 九月 2017 07:26:35 +0800
Subject: [PATCH] Omg

---
 code/train.py |   23 ++++++++++++++++-------
 1 files changed, 16 insertions(+), 7 deletions(-)

diff --git a/code/train.py b/code/train.py
index 7b3c05d..d80ed30 100644
--- a/code/train.py
+++ b/code/train.py
@@ -102,8 +102,13 @@
 
     print 'Loading data.'
 
-    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
-                                          transforms.ToTensor()])
+    # transformations = transforms.Compose([transforms.Scale(224),
+    #                                       transforms.RandomCrop(224),
+    #                                       transforms.ToTensor()])
+
+    transformations = transforms.Compose([transforms.Scale(250),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
     pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                 transformations)
@@ -124,6 +129,10 @@
     optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                   lr = args.lr)
+    # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr},
+    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
+    #                               lr = args.lr,
+    #                               momentum = 0.9, weight_decay=0.01)
 
     print 'Ready to train network.'
 
@@ -173,15 +182,15 @@
             if (i+1) % 100 == 0:
                 print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-                if epoch == 0:
-                    torch.save(model.state_dict(),
-                    'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl')
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/resnet50_lbatch_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs - 1:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl')
+            'output/snapshots/resnet50_norm_norot_epoch_'+ str(epoch+1) + '.pkl')
 
     # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch' + str(epoch+1) + '.pkl')
+    torch.save(model.state_dict(), 'output/snapshots/resnet50_norm_norot_epoch_' + str(epoch+1) + '.pkl')

--
Gitblit v1.8.0