From 6dd2ff502947ec809d420e2baefa023d821a8bb1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 07 九月 2017 07:26:35 +0800 Subject: [PATCH] Omg --- practice/load_AFLW-Copy1.ipynb | 55 ++++++++++++++++++++++++++++++++++++++++++------------- 1 files changed, 42 insertions(+), 13 deletions(-) diff --git a/practice/load_AFLW-Copy1.ipynb b/practice/load_AFLW-Copy1.ipynb index edac84d..2ed4ce1 100644 --- a/practice/load_AFLW-Copy1.ipynb +++ b/practice/load_AFLW-Copy1.ipynb @@ -31,7 +31,7 @@ "source": [ "#Change this paths according to your directories\n", "images_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/flickr/\"\n", - "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/\"" + "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/\"" ] }, { @@ -40,7 +40,15 @@ "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], "source": [ "#Image counter\n", "counter = 1\n", @@ -92,19 +100,21 @@ " face_h = row[8]\n", "\n", " #Error correction\n", - " if(face_x < 0): face_x = 0\n", - " if(face_y < 0): face_y = 0\n", - " if(face_w > image_w): \n", - " face_w = image_w\n", - " face_h = image_w\n", - " if(face_h > image_h): \n", - " face_h = image_h\n", - " face_w = image_h\n", - "\n", + " k = 0.15\n", + " x_min = face_x - image_w * k\n", + " x_max = face_x + image_w * (k+1)\n", + " y_min = face_y - image_h * k\n", + " y_max = face_y + image_h * (k+1)\n", + " \n", + " x_min = int(max(0, x_min))\n", + " x_max = int(min(image_w, x_max))\n", + " y_min = int(max(0, y_min))\n", + " y_max = int(min(image_h, y_max))\n", + " \n", " #Crop the face from the image\n", - " image_cropped = np.copy(image[face_y:face_y+face_h, face_x:face_x+face_w])\n", + " image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n", " #Uncomment the lines below if you want to rescale the image to a particular size\n", - " to_size = 240\n", + " to_size = 260\n", " image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n", " #Uncomment the line below if you want to use adaptive histogram normalisation\n", " #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5))\n", @@ -134,6 +144,25 @@ }, { "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "test\n" + ] + } + ], + "source": [ + "print 'test'" + ] + }, + { + "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true -- Gitblit v1.8.0