From 6f71fb102f509d705d3abaa1f44638a19f57e92e Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期一, 07 八月 2017 05:15:52 +0800
Subject: [PATCH] next

---
 code/test_on_video.py     |  152 ++++++++++++++++++++++++++++++++++++++++++++++++++
 code/test_resnet_bins.py  |    8 +-
 code/utils.py             |    4 
 code/train_resnet_bins.py |   12 +++-
 4 files changed, 166 insertions(+), 10 deletions(-)

diff --git a/code/test_on_video.py b/code/test_on_video.py
new file mode 100644
index 0000000..4fad440
--- /dev/null
+++ b/code/test_on_video.py
@@ -0,0 +1,152 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+from PIL import Image
+
+import cv2
+import matplotlib.pyplot as plt
+import sys, os, argparse
+
+import datasets, hopenet, utils
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
+          default='', type=str)
+    parser.add_argument('--video', dest='video_path', help='Path of video')
+    parser.add_argument('--bboxes', dest='bboxes', help='Bounding box annotations of frames')
+    parser.add_argument('--output_string', dest='output_string', help='String appended to output file')
+    args = parser.parse_args()
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+
+    batch_size = 1
+    gpu = args.gpu_id
+    snapshot_path = args.snapshot
+    out_dir = 'output/video'
+    video_path = args.video_path
+
+    if not os.path.exists(out_dir):
+        os.makedirs(out_dir)
+
+    if not os.path.exists(args.video_path):
+        sys.exit('Video does not exist')
+
+    # ResNet50 with 3 outputs.
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot.'
+    # Load snapshot
+    saved_state_dict = torch.load(snapshot_path)
+    model.load_state_dict(saved_state_dict)
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor()])
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    # Test the Model
+    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+    total = 0
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    video = cv2.VideoCapture(video_path)
+    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))   # float
+    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float
+
+    # Define the codec and create VideoWriter object
+    fourcc = cv2.VideoWriter_fourcc(*'MJPG')
+    out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, 30.0, (width, height))
+
+    bbox_file = open(args.bboxes, 'r')
+    frame_num = 1
+
+    # TODO: support for several bounding boxes
+    for line in bbox_file:
+        line = line.strip('\n')
+        line = line.split(' ')
+        det_frame_num = int(line[0])
+
+        print frame_num
+
+        # Stop at a certain frame number
+        if frame_num > 10000:
+            out.release()
+            video.release()
+            bbox_file.close()
+            sys.exit(0)
+
+        # Save all frames as they are if they don't have bbox annotation.
+        while frame_num < det_frame_num:
+            ret, frame = video.read()
+            if ret == False:
+                out.release()
+                video.release()
+                bbox_file.close()
+                sys.exit(0)
+            out.write(frame)
+            frame_num += 1
+
+        ret,frame = video.read()
+        if ret == False:
+            out.release()
+            video.release()
+            bbox_file.close()
+            sys.exit(0)
+
+        x_min, y_min, x_max, y_max = int(line[1]), int(line[2]), int(line[3]), int(line[4])
+        # Crop image
+        img = frame[y_min:y_max,x_min:x_max]
+        img = Image.fromarray(img)
+
+        # Transform
+        img = transformations(img)
+        img_shape = img.size()
+        img = img.view(1, img_shape[0], img_shape[1], img_shape[2])
+        img = Variable(img).cuda(gpu)
+        yaw, pitch, roll = model(img)
+
+        yaw_predicted = F.softmax(yaw)
+        pitch_predicted = F.softmax(pitch)
+        roll_predicted = F.softmax(roll)
+        # Get continuous predictions in degrees.
+        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99
+        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99
+        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99
+
+        # Print new frame with cube and TODO: axis
+        utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = 200)
+        out.write(frame)
+
+        frame_num += 1
+
+    while True:
+        ret, frame = video.read()
+        if ret == False:
+            out.release()
+            video.release()
+            bbox_file.close()
+            sys.exit(0)
+        out.write(frame)
+        frame_num += 1
diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py
index 8d0eaec..cfc3dc5 100644
--- a/code/test_resnet_bins.py
+++ b/code/test_resnet_bins.py
@@ -47,8 +47,8 @@
     snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
 
     # ResNet50 with 3 outputs.
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
     print 'Loading snapshot.'
     # Load snapshot
@@ -87,7 +87,6 @@
 
     for i, (images, labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-
         total += labels.size(0)
         label_yaw = labels[:,0]
         label_pitch = labels[:,1]
@@ -126,8 +125,7 @@
         if args.save_viz:
             name = name[0]
             cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
-            #print name
+            #print os.path.join('output/images', name + '.jpg')
             #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
             #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
             utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99)
diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py
index f33ffd6..6b07747 100644
--- a/code/train_resnet_bins.py
+++ b/code/train_resnet_bins.py
@@ -109,7 +109,13 @@
 
     model.cuda(gpu)
     criterion = nn.CrossEntropyLoss()
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
+    # optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
+    #                               {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
+    #                               lr = args.lr)
+    # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr},
+    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
+    #                               lr = args.lr, momentum=0.9)
+    optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                   lr = args.lr)
 
@@ -141,7 +147,7 @@
         if epoch % 1 == 0 and epoch < num_epochs - 1:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl')
+            'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl')
 
     # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl')
+    torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl')
diff --git a/code/utils.py b/code/utils.py
index 645ae19..52bfa73 100644
--- a/code/utils.py
+++ b/code/utils.py
@@ -22,8 +22,8 @@
         face_y = tdy - 0.50 * size
     else:
         height, width = img.shape[:2]
-        face_x = width / 2 - 0.15 - size
-        face_y = height / 2 - 0.15 - size
+        face_x = width / 2 - 0.5 * size
+        face_y = height / 2 - 0.5 * size
 
     x1 = size * (cos(y) * cos(r)) + face_x
     y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y

--
Gitblit v1.8.0