From 6f71fb102f509d705d3abaa1f44638a19f57e92e Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期一, 07 八月 2017 05:15:52 +0800 Subject: [PATCH] next --- code/test_on_video.py | 152 ++++++++++++++++++++++++++++++++++++++++++++++++++ code/test_resnet_bins.py | 8 +- code/utils.py | 4 code/train_resnet_bins.py | 12 +++- 4 files changed, 166 insertions(+), 10 deletions(-) diff --git a/code/test_on_video.py b/code/test_on_video.py new file mode 100644 index 0000000..4fad440 --- /dev/null +++ b/code/test_on_video.py @@ -0,0 +1,152 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F +from PIL import Image + +import cv2 +import matplotlib.pyplot as plt +import sys, os, argparse + +import datasets, hopenet, utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', + default='', type=str) + parser.add_argument('--video', dest='video_path', help='Path of video') + parser.add_argument('--bboxes', dest='bboxes', help='Bounding box annotations of frames') + parser.add_argument('--output_string', dest='output_string', help='String appended to output file') + args = parser.parse_args() + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + + batch_size = 1 + gpu = args.gpu_id + snapshot_path = args.snapshot + out_dir = 'output/video' + video_path = args.video_path + + if not os.path.exists(out_dir): + os.makedirs(out_dir) + + if not os.path.exists(args.video_path): + sys.exit('Video does not exist') + + # ResNet50 with 3 outputs. + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor()]) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + video = cv2.VideoCapture(video_path) + width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) # float + height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float + + # Define the codec and create VideoWriter object + fourcc = cv2.VideoWriter_fourcc(*'MJPG') + out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, 30.0, (width, height)) + + bbox_file = open(args.bboxes, 'r') + frame_num = 1 + + # TODO: support for several bounding boxes + for line in bbox_file: + line = line.strip('\n') + line = line.split(' ') + det_frame_num = int(line[0]) + + print frame_num + + # Stop at a certain frame number + if frame_num > 10000: + out.release() + video.release() + bbox_file.close() + sys.exit(0) + + # Save all frames as they are if they don't have bbox annotation. + while frame_num < det_frame_num: + ret, frame = video.read() + if ret == False: + out.release() + video.release() + bbox_file.close() + sys.exit(0) + out.write(frame) + frame_num += 1 + + ret,frame = video.read() + if ret == False: + out.release() + video.release() + bbox_file.close() + sys.exit(0) + + x_min, y_min, x_max, y_max = int(line[1]), int(line[2]), int(line[3]), int(line[4]) + # Crop image + img = frame[y_min:y_max,x_min:x_max] + img = Image.fromarray(img) + + # Transform + img = transformations(img) + img_shape = img.size() + img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) + img = Variable(img).cuda(gpu) + yaw, pitch, roll = model(img) + + yaw_predicted = F.softmax(yaw) + pitch_predicted = F.softmax(pitch) + roll_predicted = F.softmax(roll) + # Get continuous predictions in degrees. + yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99 + roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 + + # Print new frame with cube and TODO: axis + utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = 200) + out.write(frame) + + frame_num += 1 + + while True: + ret, frame = video.read() + if ret == False: + out.release() + video.release() + bbox_file.close() + sys.exit(0) + out.write(frame) + frame_num += 1 diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index 8d0eaec..cfc3dc5 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -47,8 +47,8 @@ snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') # ResNet50 with 3 outputs. - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -87,7 +87,6 @@ for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) label_yaw = labels[:,0] label_pitch = labels[:,1] @@ -126,8 +125,7 @@ if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR) - #print name + #print os.path.join('output/images', name + '.jpg') #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py index f33ffd6..6b07747 100644 --- a/code/train_resnet_bins.py +++ b/code/train_resnet_bins.py @@ -109,7 +109,13 @@ model.cuda(gpu) criterion = nn.CrossEntropyLoss() - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + # optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + # lr = args.lr) + # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # lr = args.lr, momentum=0.9) + optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) @@ -141,7 +147,7 @@ if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/utils.py b/code/utils.py index 645ae19..52bfa73 100644 --- a/code/utils.py +++ b/code/utils.py @@ -22,8 +22,8 @@ face_y = tdy - 0.50 * size else: height, width = img.shape[:2] - face_x = width / 2 - 0.15 - size - face_y = height / 2 - 0.15 - size + face_x = width / 2 - 0.5 * size + face_y = height / 2 - 0.5 * size x1 = size * (cos(y) * cos(r)) + face_x y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y -- Gitblit v1.8.0