From 7e2652eace4f443b6a01f006b420e91128f0bb7a Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期一, 04 九月 2017 03:25:59 +0800 Subject: [PATCH] Before modifying dataset loading for data augmentation. --- code/datasets.py | 62 +++++++++++++++++++++++++++++++ 1 files changed, 62 insertions(+), 0 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 63ee287..4594cbc 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -214,6 +214,68 @@ # Around 200 return self.length +class LP_300W_LP(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') + + # Crop the face + # TODO: Change bounding box. + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape binned shape + shape = np.load(shape_path) + + # Convert pt2d to maps of image size + # that have + + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # 122,450 + return self.length + def get_list_from_filenames(file_path): # input: relative path to .txt file with file names -- Gitblit v1.8.0