From 7e2652eace4f443b6a01f006b420e91128f0bb7a Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期一, 04 九月 2017 03:25:59 +0800
Subject: [PATCH] Before modifying dataset loading for data augmentation.

---
 code/datasets.py |   62 +++++++++++++++++++++++++++++++
 1 files changed, 62 insertions(+), 0 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 63ee287..4594cbc 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -214,6 +214,68 @@
         # Around 200
         return self.length
 
+class LP_300W_LP(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+
+        # Crop the face
+        # TODO: Change bounding box.
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape binned shape
+        shape = np.load(shape_path)
+
+        # Convert pt2d to maps of image size
+        # that have
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
 
 def get_list_from_filenames(file_path):
     # input:    relative path to .txt file with file names

--
Gitblit v1.8.0