From 868222967bf310e6c5bc1d6b3af0e9e49d2992c2 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期二, 08 八月 2017 10:30:30 +0800
Subject: [PATCH] Before experiments

---
 code/datasets.py                    |   14 +
 code/train_resnet_bins_grayscale.py |  159 ++++++++++++++++++++++
 code/test_resnet_bins_grayscale.py  |  144 ++++++++++++++++++++
 code/utils.py                       |   58 ++++----
 4 files changed, 342 insertions(+), 33 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 06cd433..4d1f71f 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -7,6 +7,10 @@
 
 import utils
 
+def stack_grayscale_tensor(tensor):
+    tensor = torch.cat([tensor, tensor, tensor], 0)
+    return tensor
+
 class Pose_300W_LP(Dataset):
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
         self.data_dir = data_dir
@@ -66,7 +70,7 @@
         return self.length
 
 class Pose_300W_LP_binned(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -76,11 +80,12 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
         # Crop the face
@@ -117,7 +122,7 @@
         return self.length
 
 class AFLW2000_binned(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -127,11 +132,12 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
         # Crop the face
diff --git a/code/test_resnet_bins_grayscale.py b/code/test_resnet_bins_grayscale.py
new file mode 100644
index 0000000..4502346
--- /dev/null
+++ b/code/test_resnet_bins_grayscale.py
@@ -0,0 +1,144 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    batch_size = 1
+    gpu = args.gpu_id
+    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot.'
+    # Load snapshot
+    saved_state_dict = torch.load(snapshot_path)
+    model.load_state_dict(saved_state_dict)
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))])
+
+    pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list,
+                                transformations, image_mode = 'L')
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    # Test the Model
+    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+    total = 0
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
+    for i, (images, labels, name) in enumerate(test_loader):
+        images = Variable(images).cuda(gpu)
+        total += labels.size(0)
+        label_yaw = labels[:,0]
+        label_pitch = labels[:,1]
+        label_roll = labels[:,2]
+
+        yaw, pitch, roll = model(images)
+
+        # Binned predictions
+        _, yaw_bpred = torch.max(yaw.data, 1)
+        _, pitch_bpred = torch.max(pitch.data, 1)
+        _, roll_bpred = torch.max(roll.data, 1)
+
+        yaw_predicted = F.softmax(yaw)
+        pitch_predicted = F.softmax(pitch)
+        roll_predicted = F.softmax(roll)
+
+        # Continuous predictions
+        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
+        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
+        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
+
+        # Mean absolute error
+        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
+        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
+        roll_error += abs(roll_predicted - label_roll[0]) * 3
+
+        # Binned Accuracy
+        # for er in xrange(n_margins):
+        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
+        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
+        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
+
+        # print label_yaw[0], yaw_bpred[0,0]
+
+        # Save images with pose cube.
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            #print os.path.join('output/images', name + '.jpg')
+            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
+            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
+            utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+
+    # Binned accuracy
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/train_resnet_bins_grayscale.py b/code/train_resnet_bins_grayscale.py
new file mode 100644
index 0000000..83941d0
--- /dev/null
+++ b/code/train_resnet_bins_grayscale.py
@@ -0,0 +1,159 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torchvision
+import torch.backends.cudnn as cudnn
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import torch.utils.model_zoo as model_zoo
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+}
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
+          default=5, type=int)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=16, type=int)
+    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
+          default=0.001, type=float)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+
+    args = parser.parse_args()
+
+    return args
+
+def get_ignored_params(model):
+    # Generator function that yields ignored params.
+    b = []
+    b.append(model.conv1)
+    b.append(model.bn1)
+    b.append(model.layer1)
+    b.append(model.layer2)
+    b.append(model.layer3)
+    b.append(model.layer4)
+    for i in range(len(b)):
+        for j in b[i].modules():
+            for k in j.parameters():
+                yield k
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
+    b.append(model.fc_yaw)
+    b.append(model.fc_pitch)
+    b.append(model.fc_roll)
+    for i in range(len(b)):
+        for j in b[i].modules():
+            for k in j.parameters():
+                    yield k
+
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    # 1. filter out unnecessary keys
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    # 2. overwrite entries in the existing state dict
+    model_dict.update(snapshot)
+    # 3. load the new state dict
+    model.load_state_dict(model_dict)
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    num_epochs = args.num_epochs
+    batch_size = args.batch_size
+    gpu = args.gpu_id
+
+    if not os.path.exists('output/snapshots'):
+        os.makedirs('output/snapshots')
+
+    # ResNet101 with 3 outputs
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18']))
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
+                                          transforms.ToTensor(), transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))])
+
+    pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list,
+                                transformations, image_mode='L')
+    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=batch_size,
+                                               shuffle=True,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+    criterion = nn.CrossEntropyLoss()
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
+                                  lr = args.lr)
+    # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr},
+    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
+    #                               lr = args.lr, momentum=0.9)
+    # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr},
+    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
+    #                               lr = args.lr)
+
+    print 'Ready to train network.'
+
+    for epoch in range(num_epochs):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images).cuda(gpu)
+            label_yaw = Variable(labels[:,0]).cuda(gpu)
+            label_pitch = Variable(labels[:,1]).cuda(gpu)
+            label_roll = Variable(labels[:,2]).cuda(gpu)
+
+            optimizer.zero_grad()
+            yaw, pitch, roll = model(images)
+            loss_yaw = criterion(yaw, label_yaw)
+            loss_pitch = criterion(pitch, label_pitch)
+            loss_roll = criterion(roll, label_roll)
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
+                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
+            # if (i+1) % 10000 and epoch == 0:
+            #     torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_iter_' + str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs - 1:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/resnet18_cr_gray_epoch_'+ str(epoch+1) + '.pkl')
+
+    # Save the final Trained Model
+    torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_epoch_' + str(epoch+1) + '.pkl')
diff --git a/code/utils.py b/code/utils.py
index 1e37045..09a47a8 100644
--- a/code/utils.py
+++ b/code/utils.py
@@ -7,6 +7,35 @@
 import math
 from math import cos, sin
 
+def get_pose_params_from_mat(mat_path):
+    # This functions gets the pose parameters from the .mat
+    # Annotations that come with the 300W_LP dataset.
+    mat = sio.loadmat(mat_path)
+    # [pitch yaw roll tdx tdy tdz scale_factor]
+    pre_pose_params = mat['Pose_Para'][0]
+    # Get [pitch, yaw, roll, tdx, tdy]
+    pose_params = pre_pose_params[:5]
+    return pose_params
+
+def get_ypr_from_mat(mat_path):
+    # Get yaw, pitch, roll from .mat annotation.
+    # They are in radians
+    mat = sio.loadmat(mat_path)
+    # [pitch yaw roll tdx tdy tdz scale_factor]
+    pre_pose_params = mat['Pose_Para'][0]
+    # Get [pitch, yaw, roll]
+    pose_params = pre_pose_params[:3]
+    return pose_params
+
+def get_pt2d_from_mat(mat_path):
+    # Get 2D landmarks
+    mat = sio.loadmat(mat_path)
+    pt2d = mat['pt2d']
+    return pt2d
+
+def mse_loss(input, target):
+    return torch.sum(torch.abs(input.data - target.data) ** 2)
+
 def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.):
     # Input is a cv2 image
     # pose_params: (pitch, yaw, roll, tdx, tdy)
@@ -49,32 +78,3 @@
     cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2)
 
     return img
-
-def get_pose_params_from_mat(mat_path):
-    # This functions gets the pose parameters from the .mat
-    # Annotations that come with the 300W_LP dataset.
-    mat = sio.loadmat(mat_path)
-    # [pitch yaw roll tdx tdy tdz scale_factor]
-    pre_pose_params = mat['Pose_Para'][0]
-    # Get [pitch, yaw, roll, tdx, tdy]
-    pose_params = pre_pose_params[:5]
-    return pose_params
-
-def get_ypr_from_mat(mat_path):
-    # Get yaw, pitch, roll from .mat annotation.
-    # They are in radians
-    mat = sio.loadmat(mat_path)
-    # [pitch yaw roll tdx tdy tdz scale_factor]
-    pre_pose_params = mat['Pose_Para'][0]
-    # Get [pitch, yaw, roll]
-    pose_params = pre_pose_params[:3]
-    return pose_params
-
-def get_pt2d_from_mat(mat_path):
-    # Get 2D landmarks
-    mat = sio.loadmat(mat_path)
-    pt2d = mat['pt2d']
-    return pt2d
-
-def mse_loss(input, target):
-    return torch.sum(torch.abs(input.data - target.data) ** 2)

--
Gitblit v1.8.0