From 868222967bf310e6c5bc1d6b3af0e9e49d2992c2 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 08 八月 2017 10:30:30 +0800 Subject: [PATCH] Before experiments --- code/datasets.py | 14 + code/train_resnet_bins_grayscale.py | 159 ++++++++++++++++++++++ code/test_resnet_bins_grayscale.py | 144 ++++++++++++++++++++ code/utils.py | 58 ++++---- 4 files changed, 342 insertions(+), 33 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 06cd433..4d1f71f 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -7,6 +7,10 @@ import utils +def stack_grayscale_tensor(tensor): + tensor = torch.cat([tensor, tensor, tensor], 0) + return tensor + class Pose_300W_LP(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): self.data_dir = data_dir @@ -66,7 +70,7 @@ return self.length class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -76,11 +80,12 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face @@ -117,7 +122,7 @@ return self.length class AFLW2000_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -127,11 +132,12 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face diff --git a/code/test_resnet_bins_grayscale.py b/code/test_resnet_bins_grayscale.py new file mode 100644 index 0000000..4502346 --- /dev/null +++ b/code/test_resnet_bins_grayscale.py @@ -0,0 +1,144 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + batch_size = 1 + gpu = args.gpu_id + snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))]) + + pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, + transformations, image_mode = 'L') + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0] + label_pitch = labels[:,1] + label_roll = labels[:,2] + + yaw, pitch, roll = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + yaw_predicted = F.softmax(yaw) + pitch_predicted = F.softmax(pitch) + roll_predicted = F.softmax(roll) + + # Continuous predictions + yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) + pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) + roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) + + # Mean absolute error + yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 + pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 + roll_error += abs(roll_predicted - label_roll[0]) * 3 + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/train_resnet_bins_grayscale.py b/code/train_resnet_bins_grayscale.py new file mode 100644 index 0000000..83941d0 --- /dev/null +++ b/code/train_resnet_bins_grayscale.py @@ -0,0 +1,159 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torchvision +import torch.backends.cudnn as cudnn + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import torch.utils.model_zoo as model_zoo + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', + default=5, type=int) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=16, type=int) + parser.add_argument('--lr', dest='lr', help='Base learning rate.', + default=0.001, type=float) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + + args = parser.parse_args() + + return args + +def get_ignored_params(model): + # Generator function that yields ignored params. + b = [] + b.append(model.conv1) + b.append(model.bn1) + b.append(model.layer1) + b.append(model.layer2) + b.append(model.layer3) + b.append(model.layer4) + for i in range(len(b)): + for j in b[i].modules(): + for k in j.parameters(): + yield k + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] + b.append(model.fc_yaw) + b.append(model.fc_pitch) + b.append(model.fc_roll) + for i in range(len(b)): + for j in b[i].modules(): + for k in j.parameters(): + yield k + +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + # 1. filter out unnecessary keys + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + # 2. overwrite entries in the existing state dict + model_dict.update(snapshot) + # 3. load the new state dict + model.load_state_dict(model_dict) + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + num_epochs = args.num_epochs + batch_size = args.batch_size + gpu = args.gpu_id + + if not os.path.exists('output/snapshots'): + os.makedirs('output/snapshots') + + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), + transforms.ToTensor(), transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))]) + + pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, + transformations, image_mode='L') + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + shuffle=True, + num_workers=2) + + model.cuda(gpu) + criterion = nn.CrossEntropyLoss() + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + lr = args.lr) + # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # lr = args.lr, momentum=0.9) + # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # lr = args.lr) + + print 'Ready to train network.' + + for epoch in range(num_epochs): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images).cuda(gpu) + label_yaw = Variable(labels[:,0]).cuda(gpu) + label_pitch = Variable(labels[:,1]).cuda(gpu) + label_roll = Variable(labels[:,2]).cuda(gpu) + + optimizer.zero_grad() + yaw, pitch, roll = model(images) + loss_yaw = criterion(yaw, label_yaw) + loss_pitch = criterion(pitch, label_pitch) + loss_roll = criterion(roll, label_roll) + + loss_seq = [loss_yaw, loss_pitch, loss_roll] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if (i+1) % 10000 and epoch == 0: + # torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_iter_' + str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs - 1: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/resnet18_cr_gray_epoch_'+ str(epoch+1) + '.pkl') + + # Save the final Trained Model + torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/utils.py b/code/utils.py index 1e37045..09a47a8 100644 --- a/code/utils.py +++ b/code/utils.py @@ -7,6 +7,35 @@ import math from math import cos, sin +def get_pose_params_from_mat(mat_path): + # This functions gets the pose parameters from the .mat + # Annotations that come with the 300W_LP dataset. + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll, tdx, tdy] + pose_params = pre_pose_params[:5] + return pose_params + +def get_ypr_from_mat(mat_path): + # Get yaw, pitch, roll from .mat annotation. + # They are in radians + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll] + pose_params = pre_pose_params[:3] + return pose_params + +def get_pt2d_from_mat(mat_path): + # Get 2D landmarks + mat = sio.loadmat(mat_path) + pt2d = mat['pt2d'] + return pt2d + +def mse_loss(input, target): + return torch.sum(torch.abs(input.data - target.data) ** 2) + def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) @@ -49,32 +78,3 @@ cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img - -def get_pose_params_from_mat(mat_path): - # This functions gets the pose parameters from the .mat - # Annotations that come with the 300W_LP dataset. - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll, tdx, tdy] - pose_params = pre_pose_params[:5] - return pose_params - -def get_ypr_from_mat(mat_path): - # Get yaw, pitch, roll from .mat annotation. - # They are in radians - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll] - pose_params = pre_pose_params[:3] - return pose_params - -def get_pt2d_from_mat(mat_path): - # Get 2D landmarks - mat = sio.loadmat(mat_path) - pt2d = mat['pt2d'] - return pt2d - -def mse_loss(input, target): - return torch.sum(torch.abs(input.data - target.data) ** 2) -- Gitblit v1.8.0