From 868222967bf310e6c5bc1d6b3af0e9e49d2992c2 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 08 八月 2017 10:30:30 +0800 Subject: [PATCH] Before experiments --- code/utils.py | 58 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 29 insertions(+), 29 deletions(-) diff --git a/code/utils.py b/code/utils.py index 1e37045..09a47a8 100644 --- a/code/utils.py +++ b/code/utils.py @@ -7,6 +7,35 @@ import math from math import cos, sin +def get_pose_params_from_mat(mat_path): + # This functions gets the pose parameters from the .mat + # Annotations that come with the 300W_LP dataset. + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll, tdx, tdy] + pose_params = pre_pose_params[:5] + return pose_params + +def get_ypr_from_mat(mat_path): + # Get yaw, pitch, roll from .mat annotation. + # They are in radians + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll] + pose_params = pre_pose_params[:3] + return pose_params + +def get_pt2d_from_mat(mat_path): + # Get 2D landmarks + mat = sio.loadmat(mat_path) + pt2d = mat['pt2d'] + return pt2d + +def mse_loss(input, target): + return torch.sum(torch.abs(input.data - target.data) ** 2) + def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) @@ -49,32 +78,3 @@ cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img - -def get_pose_params_from_mat(mat_path): - # This functions gets the pose parameters from the .mat - # Annotations that come with the 300W_LP dataset. - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll, tdx, tdy] - pose_params = pre_pose_params[:5] - return pose_params - -def get_ypr_from_mat(mat_path): - # Get yaw, pitch, roll from .mat annotation. - # They are in radians - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll] - pose_params = pre_pose_params[:3] - return pose_params - -def get_pt2d_from_mat(mat_path): - # Get 2D landmarks - mat = sio.loadmat(mat_path) - pt2d = mat['pt2d'] - return pt2d - -def mse_loss(input, target): - return torch.sum(torch.abs(input.data - target.data) ** 2) -- Gitblit v1.8.0