From 888dc776c36f9e1f8803732c34dfc359ad81dcee Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 29 十一月 2017 13:11:42 +0800
Subject: [PATCH] Synhead

---
 code/datasets.py      |   60 ++++++++++++++++++++++++++++++
 code/train_hopenet.py |   15 ++++++-
 2 files changed, 72 insertions(+), 3 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index a28c584..5f1dfdc 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -1,6 +1,7 @@
 import os
 import numpy as np
 import cv2
+import pandas as pd
 
 import torch
 from torch.utils.data.dataset import Dataset
@@ -17,6 +18,65 @@
         lines = f.read().splitlines()
     return lines
 
+class Synhead(Dataset):
+    def __init__(self, data_dir, csv_path, transform, test=False):
+        column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']
+        tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig")
+        self.data_dir = data_dir
+        self.transform = transform
+        self.X_train = tmp_df['path']
+        self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']]
+        self.length = len(tmp_df)
+        self.test = test
+
+    def __getitem__(self, index):
+        path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png'
+        img = Image.open(path)
+        img = img.convert('RGB')
+
+        x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index]
+        x_min = float(x_min); x_max = float(x_max)
+        y_min = float(y_min); y_max = float(y_max)
+        yaw = -float(yaw); pitch = float(pitch); roll = float(roll)
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+
+        width, height = img.size
+        # Crop the face
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(binned_pose)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        return self.length
+
 class Pose_300W_LP(Dataset):
     # Head pose from 300W-LP dataset
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
diff --git a/code/train_hopenet.py b/code/train_hopenet.py
index 600a9ae..6278a87 100644
--- a/code/train_hopenet.py
+++ b/code/train_hopenet.py
@@ -27,6 +27,7 @@
           default=16, type=int)
     parser.add_argument('--lr', dest='lr', help='Base learning rate.',
           default=0.001, type=float)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
     parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
@@ -34,7 +35,8 @@
     parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
     parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
           default=0.001, type=float)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
+          default='', type=str)
 
     args = parser.parse_args()
     return args
@@ -87,7 +89,12 @@
 
     # ResNet50 structure
     model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
-    load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth'))
+
+    if args.snapshot == '':
+        load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth'))
+    else:
+        saved_state_dict = torch.load(args.snapshot)
+        model.load_state_dict(saved_state_dict)
 
     print 'Loading data.'
 
@@ -99,6 +106,8 @@
         pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'Pose_300W_LP_random_ds':
         pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Synhead':
+        pose_dataset = datasets.Synhead(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW2000':
         pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'BIWI':
@@ -149,7 +158,7 @@
             label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu)
 
             # Forward pass
-            yaw, pitch, roll, angles = model(images)
+            yaw, pitch, roll = model(images)
 
             # Cross entropy loss
             loss_yaw = criterion(yaw, label_yaw)

--
Gitblit v1.8.0