From 888dc776c36f9e1f8803732c34dfc359ad81dcee Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 29 十一月 2017 13:11:42 +0800 Subject: [PATCH] Synhead --- code/datasets.py | 60 ++++++++++++++++++++++++++++++ code/train_hopenet.py | 15 ++++++- 2 files changed, 72 insertions(+), 3 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index a28c584..5f1dfdc 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,6 +1,7 @@ import os import numpy as np import cv2 +import pandas as pd import torch from torch.utils.data.dataset import Dataset @@ -17,6 +18,65 @@ lines = f.read().splitlines() return lines +class Synhead(Dataset): + def __init__(self, data_dir, csv_path, transform, test=False): + column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] + tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") + self.data_dir = data_dir + self.transform = transform + self.X_train = tmp_df['path'] + self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] + self.length = len(tmp_df) + self.test = test + + def __getitem__(self, index): + path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' + img = Image.open(path) + img = img.convert('RGB') + + x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] + x_min = float(x_min); x_max = float(x_max) + y_min = float(y_min); y_max = float(y_max) + yaw = -float(yaw); pitch = float(pitch); roll = float(roll) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + + width, height = img.size + # Crop the face + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + return self.length + class Pose_300W_LP(Dataset): # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): diff --git a/code/train_hopenet.py b/code/train_hopenet.py index 600a9ae..6278a87 100644 --- a/code/train_hopenet.py +++ b/code/train_hopenet.py @@ -27,6 +27,7 @@ default=16, type=int) parser.add_argument('--lr', dest='lr', help='Base learning rate.', default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', @@ -34,7 +35,8 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', + default='', type=str) args = parser.parse_args() return args @@ -87,7 +89,12 @@ # ResNet50 structure model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) + + if args.snapshot == '': + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) + else: + saved_state_dict = torch.load(args.snapshot) + model.load_state_dict(saved_state_dict) print 'Loading data.' @@ -99,6 +106,8 @@ pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) elif args.dataset == 'Pose_300W_LP_random_ds': pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Synhead': + pose_dataset = datasets.Synhead(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -149,7 +158,7 @@ label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) # Forward pass - yaw, pitch, roll, angles = model(images) + yaw, pitch, roll = model(images) # Cross entropy loss loss_yaw = criterion(yaw, label_yaw) -- Gitblit v1.8.0