From 888dc776c36f9e1f8803732c34dfc359ad81dcee Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 29 十一月 2017 13:11:42 +0800 Subject: [PATCH] Synhead --- code/datasets.py | 60 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 60 insertions(+), 0 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index a28c584..5f1dfdc 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,6 +1,7 @@ import os import numpy as np import cv2 +import pandas as pd import torch from torch.utils.data.dataset import Dataset @@ -17,6 +18,65 @@ lines = f.read().splitlines() return lines +class Synhead(Dataset): + def __init__(self, data_dir, csv_path, transform, test=False): + column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll'] + tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig") + self.data_dir = data_dir + self.transform = transform + self.X_train = tmp_df['path'] + self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']] + self.length = len(tmp_df) + self.test = test + + def __getitem__(self, index): + path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png' + img = Image.open(path) + img = img.convert('RGB') + + x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index] + x_min = float(x_min); x_max = float(x_max) + y_min = float(y_min); y_max = float(y_max) + yaw = -float(yaw); pitch = float(pitch); roll = float(roll) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + + width, height = img.size + # Crop the face + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + return self.length + class Pose_300W_LP(Dataset): # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): -- Gitblit v1.8.0