From 8e5d7dbfe49d194b7d0b616307663e9a88fbcd88 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 15 九月 2017 06:04:49 +0800 Subject: [PATCH] Training AFLW --- code/datasets.py | 241 ++++++++++++++++++++++++++++++++++------------- 1 files changed, 172 insertions(+), 69 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index f6fcc45..589da5c 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -12,64 +12,6 @@ return tensor class Pose_300W_LP(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) - - if self.transform is not None: - img = self.transform(img) - - return img, label, self.X_train[index] - - def __len__(self): - # 122,450 - return self.length - -class AFLW2000(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): - self.data_dir = data_dir - self.transform = transform - self.img_ext = img_ext - self.annot_ext = annot_ext - - filename_list = get_list_from_filenames(filename_path) - - self.X_train = filename_list - self.y_train = filename_list - self.length = len(filename_list) - - def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') - - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) - - if self.transform is not None: - img = self.transform(img) - - return img, label, self.X_train[index] - - def __len__(self): - # 2,000 - return self.length - -class Pose_300W_LP_binned(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -96,11 +38,11 @@ x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - k = 0.15 - x_min -= k * abs(x_max - x_min) - y_min -= 4 * k * abs(y_max - y_min) - x_max += k * abs(x_max - x_min) - y_max += 0.4 * k * abs(y_max - y_min) + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians @@ -109,6 +51,24 @@ pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Rotate? + # rnd = np.random.random_sample() + # if rnd < 0.5: + # if roll >= 0: + # img = img.rotate(30) + # roll -= 30 + # else: + # img = img.rotate(-30) + # roll += 30 + # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 @@ -127,7 +87,7 @@ # 122,450 return self.length -class AFLW2000_binned(Dataset): +class AFLW2000(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -154,11 +114,18 @@ y_max = max(pt2d[1,:]) k = 0.15 - x_min -= k * abs(x_max - x_min) - y_min -= 4 * k * abs(y_max - y_min) - x_max += k * abs(x_max - x_min) - y_max += 0.4 * k * abs(y_max - y_min) + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # k = 0.15 + # x_min -= k * abs(x_max - x_min) + # y_min -= 4 * k * abs(y_max - y_min) + # x_max += k * abs(x_max - x_min) + # y_max += 0.4 * k * abs(y_max - y_min) + # img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) @@ -206,6 +173,8 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi + # Something weird with the roll in AFLW + roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) @@ -216,9 +185,143 @@ return img, labels, self.X_train[index] def __len__(self): - # Check how many + # train: 18,863 + # test: 1,966 return self.length +class AFW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + img_name = self.X_train[index].split('_')[0] + + img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in degrees + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] + + # Crop the face + k = 0.25 + x1 -= 0.6 * k * abs(x2 - x1) + y1 -= 3 * k * abs(y2 - y1) + x2 += 0.6 * k * abs(x2 - x1) + y2 += 0.6 * k * abs(y2 - y1) + + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # Around 200 + return self.length + +class BIWI(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) + img = img.convert(self.image_mode) + pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) + + y_train_list = self.y_train[index].split('/') + bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) + + # Load bounding box + bbox = open(bbox_path, 'r') + line = bbox.readline().split(' ') + if len(line) < 4: + x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] + else: + x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] + bbox.close() + + # Load pose in degrees + pose_annot = open(pose_path, 'r') + R = [] + for line in pose_annot: + line = line.strip('\n').split(' ') + l = [] + if line[0] != '': + for nb in line: + if nb == '': + continue + l.append(float(nb)) + R.append(l) + + R = np.array(R) + T = R[3,:] + R = R[:3,:] + pose_annot.close() + + roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi + yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi + pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi + + # Loosely crop face + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + # rnd = np.random.random_sample() + # if rnd < 0.5: + # yaw = -yaw + # roll = -roll + # img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # 15,667 + return self.length + + def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names -- Gitblit v1.8.0