From 93855b2faf8b795d0058c217ee980d435f23227d Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 08:54:14 +0800 Subject: [PATCH] Training on AFLW with different yaw loss multipliers --- code/train.py | 24 ++++ practice/.ipynb_checkpoints/create_filtered_datasets-checkpoint.ipynb | 61 ++++++++++++ practice/remove_KEPLER_test_split.ipynb | 10 +- code/datasets.py | 1 code/hopenet.py | 6 code/train_AFLW_preangles.py | 2 practice/create_filtered_datasets.ipynb | 10 +- code/batch_testing.py | 6 code/train_preangles.py | 22 +++ code/test.py | 7 code/test_res.py | 140 ++++++++++++++++++++++++++++ 11 files changed, 260 insertions(+), 29 deletions(-) diff --git a/code/batch_testing.py b/code/batch_testing.py index db688a9..58d3b30 100644 --- a/code/batch_testing.py +++ b/code/batch_testing.py @@ -123,9 +123,9 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[args.iter_ref][:,0].cpu().data - pitch = angles[args.iter_ref][:,1].cpu().data - roll = angles[args.iter_ref][:,2].cpu().data + yaw = angles[-1][:,0].cpu().data + pitch = angles[-1][:,1].cpu().data + roll = angles[-1][:,2].cpu().data # Mean absolute error yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) diff --git a/code/datasets.py b/code/datasets.py index 6ed209b..589da5c 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -174,7 +174,6 @@ pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Something weird with the roll in AFLW - # if yaw < 0: roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) diff --git a/code/hopenet.py b/code/hopenet.py index d122243..4aa0dfb 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -117,10 +117,12 @@ pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) angles = [] - angles.append(torch.cat([yaw, pitch, roll], 1)) + preangles = torch.cat([yaw, pitch, roll], 1) + angles.append(preangles) + # angles predicts the residual for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) + angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) return pre_yaw, pre_pitch, pre_roll, angles diff --git a/code/test.py b/code/test.py index 7f76714..9ff35e6 100644 --- a/code/test.py +++ b/code/test.py @@ -110,12 +110,11 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[args.iter_ref][:,0].cpu().data - pitch = angles[args.iter_ref][:,1].cpu().data - roll = angles[args.iter_ref][:,2].cpu().data + yaw = angles[-1][:,0].cpu().data + pitch = angles[-1][:,1].cpu().data + roll = angles[-1][:,2].cpu().data # Mean absolute error - print yaw.numpy(), label_yaw.numpy() yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) roll_error += torch.sum(torch.abs(roll - label_roll) * 3) diff --git a/code/test_res.py b/code/test_res.py new file mode 100644 index 0000000..124ad4d --- /dev/null +++ b/code/test_res.py @@ -0,0 +1,140 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[0][:,0].cpu().data + pitch = angles[0][:,1].cpu().data + roll = angles[0][:,2].cpu().data + + for idx in xrange(1,args.iter_ref+1): + yaw += angles[idx][:,0].cpu().data + pitch += angles[idx][:,1].cpu().data + roll += angles[idx][:,2].cpu().data + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll - label_roll) * 3) + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + + if args.batch_size == 1: + error_string = 'y %.4f, p %.4f, r %.4f' % (torch.sum(torch.abs(yaw - label_yaw) * 3), torch.sum(torch.abs(pitch - label_pitch) * 3), torch.sum(torch.abs(roll - label_roll) * 3)) + cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=2, color=(0,255,0), thickness=2) + utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/train.py b/code/train.py index 6e1ae5b..03d5cf5 100644 --- a/code/train.py +++ b/code/train.py @@ -48,6 +48,7 @@ default=0.001, type=float) parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) args = parser.parse_args() return args @@ -124,8 +125,19 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, @@ -239,10 +251,14 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll + loss_yaw *= 0.35 + # Finetuning loss loss_seq = [loss_yaw, loss_pitch, loss_roll] - for idx in xrange(args.iter_ref+1): - loss_angles = reg_criterion(angles[idx], label_angles.float()) + for idx in xrange(1,len(angles)): + label_angles_residuals = label_angles.float() - angles[0] + label_angles_residuals = label_angles_residuals.detach() + loss_angles = reg_criterion(angles[idx], label_angles_residuals) loss_seq.append(loss_angles) grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] diff --git a/code/train_AFLW_preangles.py b/code/train_AFLW_preangles.py index ede3439..b12149c 100644 --- a/code/train_AFLW_preangles.py +++ b/code/train_AFLW_preangles.py @@ -111,7 +111,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) diff --git a/code/train_preangles.py b/code/train_preangles.py index 3179c24..5f23b25 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -46,6 +46,8 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + args = parser.parse_args() return args @@ -111,7 +113,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) @@ -122,8 +124,20 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, @@ -183,6 +197,8 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll + loss_yaw *= 0.35 + loss_seq = [loss_yaw, loss_pitch, loss_roll] # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] diff --git a/practice/.ipynb_checkpoints/create_filtered_datasets-checkpoint.ipynb b/practice/.ipynb_checkpoints/create_filtered_datasets-checkpoint.ipynb index f564f74..970dcc7 100644 --- a/practice/.ipynb_checkpoints/create_filtered_datasets-checkpoint.ipynb +++ b/practice/.ipynb_checkpoints/create_filtered_datasets-checkpoint.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": true }, @@ -93,6 +93,65 @@ " \n", " print counter" ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/'\n", + "filenames = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/filename_list.txt'" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "601\n" + ] + } + ], + "source": [ + "fid = open(filenames, 'r')\n", + "out = open(os.path.join(AFLW, 'filename_list_filtered.txt'), 'wb')\n", + "counter = 0\n", + "for line in fid:\n", + " original_line = line\n", + " line = line.strip('\\n')\n", + " if not os.path.exists(os.path.join(AFLW, line + '.txt')):\n", + " counter += 1\n", + " continue\n", + " annot_file = open(os.path.join(AFLW, line + '.txt'))\n", + " annot = annot_file.readline().strip('\\n').split(' ')\n", + " yaw = float(annot[1]) * 180 / np.pi\n", + " pitch = float(annot[2]) * 180 / np.pi\n", + " roll = float(annot[3]) * 180 / np.pi\n", + " if abs(pitch) > 89 or abs(yaw) > 89 or abs(roll) > 89:\n", + " counter += 1\n", + " continue\n", + " out.write(original_line)\n", + "\n", + "print counter " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/practice/create_filtered_datasets.ipynb b/practice/create_filtered_datasets.ipynb index e5bbf42..a6210e9 100644 --- a/practice/create_filtered_datasets.ipynb +++ b/practice/create_filtered_datasets.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": { "collapsed": true }, @@ -96,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": { "collapsed": true }, @@ -108,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 20, "metadata": { "collapsed": false }, @@ -117,7 +117,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "243\n" + "289\n" ] } ], @@ -136,7 +136,7 @@ " yaw = float(annot[1]) * 180 / np.pi\n", " pitch = float(annot[2]) * 180 / np.pi\n", " roll = float(annot[3]) * 180 / np.pi\n", - " if abs(pitch) > 99 or abs(yaw) > 99 or abs(roll) > 99:\n", + " if abs(pitch) > 98 or abs(yaw) > 98 or abs(roll) > 98:\n", " counter += 1\n", " continue\n", " out.write(original_line)\n", diff --git a/practice/remove_KEPLER_test_split.ipynb b/practice/remove_KEPLER_test_split.ipynb index 239e56a..6898b20 100644 --- a/practice/remove_KEPLER_test_split.ipynb +++ b/practice/remove_KEPLER_test_split.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 27, "metadata": { "collapsed": true }, @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "metadata": { "collapsed": true }, @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 35, "metadata": { "collapsed": false }, @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 36, "metadata": { "collapsed": false }, @@ -69,7 +69,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "954 19842\n" + "943 19537\n" ] } ], -- Gitblit v1.8.0