From 93855b2faf8b795d0058c217ee980d435f23227d Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 08:54:14 +0800 Subject: [PATCH] Training on AFLW with different yaw loss multipliers --- code/test_preangles.py | 19 +++++++++++++++---- 1 files changed, 15 insertions(+), 4 deletions(-) diff --git a/code/test_preangles.py b/code/test_preangles.py index 67e4744..7cf8ebb 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -33,6 +33,7 @@ default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -43,12 +44,12 @@ cudnn.enabled = True gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + snapshot_path = args.snapshot # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -63,11 +64,21 @@ # transforms.RandomCrop(224), transforms.ToTensor()]) transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), + transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) -- Gitblit v1.8.0