From 93855b2faf8b795d0058c217ee980d435f23227d Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 08:54:14 +0800 Subject: [PATCH] Training on AFLW with different yaw loss multipliers --- code/train.py | 24 ++++++++++++++++++++---- 1 files changed, 20 insertions(+), 4 deletions(-) diff --git a/code/train.py b/code/train.py index 6e1ae5b..03d5cf5 100644 --- a/code/train.py +++ b/code/train.py @@ -48,6 +48,7 @@ default=0.001, type=float) parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) args = parser.parse_args() return args @@ -124,8 +125,19 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, @@ -239,10 +251,14 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll + loss_yaw *= 0.35 + # Finetuning loss loss_seq = [loss_yaw, loss_pitch, loss_roll] - for idx in xrange(args.iter_ref+1): - loss_angles = reg_criterion(angles[idx], label_angles.float()) + for idx in xrange(1,len(angles)): + label_angles_residuals = label_angles.float() - angles[0] + label_angles_residuals = label_angles_residuals.detach() + loss_angles = reg_criterion(angles[idx], label_angles_residuals) loss_seq.append(loss_angles) grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] -- Gitblit v1.8.0