From 93855b2faf8b795d0058c217ee980d435f23227d Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 08:54:14 +0800 Subject: [PATCH] Training on AFLW with different yaw loss multipliers --- code/train_preangles.py | 22 +++++++++++++++++++--- 1 files changed, 19 insertions(+), 3 deletions(-) diff --git a/code/train_preangles.py b/code/train_preangles.py index 3179c24..5f23b25 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -46,6 +46,8 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + args = parser.parse_args() return args @@ -111,7 +113,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) @@ -122,8 +124,20 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, @@ -183,6 +197,8 @@ loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll + loss_yaw *= 0.35 + loss_seq = [loss_yaw, loss_pitch, loss_roll] # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] -- Gitblit v1.8.0