From 93a4f337f2fd0280634024d2ff15790831813bed Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期五, 07 七月 2017 14:33:47 +0800
Subject: [PATCH] Resnet50, and changed test error

---
 code/test_resnet_bins.py |   67 +++++++++++++++++++++++----------
 1 files changed, 47 insertions(+), 20 deletions(-)

diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py
index 0a093ee..f5be4f8 100644
--- a/code/test_resnet_bins.py
+++ b/code/test_resnet_bins.py
@@ -6,6 +6,7 @@
 from torchvision import transforms
 import torch.backends.cudnn as cudnn
 import torchvision
+import torch.nn.functional as F
 
 import cv2
 import matplotlib.pyplot as plt
@@ -43,10 +44,8 @@
     gpu = args.gpu_id
     snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
 
-    model = torchvision.models.resnet18()
-    # Parameters of newly constructed modules have requires_grad=True by default
-    num_ftrs = model.fc.in_features
-    model.fc = nn.Linear(num_ftrs, 3)
+    # ResNet50 with 3 outputs.
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
 
     print 'Loading snapshot.'
     # Load snapshot
@@ -70,25 +69,53 @@
 
     # Test the Model
     model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    yaw_correct = 0
-    pitch_correct = 0
-    roll_correct = 0
     total = 0
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
     for i, (images, labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-        labels = Variable(labels).cuda(gpu)
-        outputs = model(images)
-        _, predicted = torch.max(outputs.data, 1)
+
         total += labels.size(0)
-        # TODO: There are more efficient ways.
-        yaw_correct += (outputs[:][0] == labels[:][0])
-        pitch_correct += (outputs[:][])
-        for idx in xrange(len(outputs)):
-            yaw_correct += (outputs[idx].data[0] == labels[idx].data[0])
-            pitch_correct += (outputs[idx].data[1] == labels[idx].data[1])
-            roll_correct += (outputs[idx].data[2] == labels[idx].data[2])
+        label_yaw = labels[:,0]
+        label_pitch = labels[:,1]
+        label_roll = labels[:,2]
 
+        yaw, pitch, roll = model(images)
+        # _, yaw_predicted = torch.max(yaw.data, 1)
+        # _, pitch_predicted = torch.max(pitch.data, 1)
+        # _, roll_predicted = torch.max(roll.data, 1)
 
-    print('Test accuracies of the model on the ' + str(total) +
-    ' test images. Yaw: %.4f %%, Pitch: %.4f %%, Roll: %.4f %%' % (yaw_correct / total,
-    pitch_correct / total, roll_correct / total))
+        yaw_predicted = F.softmax(yaw)
+        pitch_predicted = F.softmax(pitch)
+        roll_predicted = F.softmax(roll)
+
+        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
+        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
+        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
+
+        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
+        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
+        roll_error += abs(roll_predicted - label_roll[0]) * 3
+
+        # for er in xrange(0,n_margins):
+        #     yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1))
+        #     pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1))
+        #     roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1))
+
+        # print label_yaw[0], yaw_predicted[0,0]
+    # 4 -> 15
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total

--
Gitblit v1.8.0