From 93a4f337f2fd0280634024d2ff15790831813bed Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 07 七月 2017 14:33:47 +0800 Subject: [PATCH] Resnet50, and changed test error --- code/train_resnet_bins.py | 18 +++++++++--------- 1 files changed, 9 insertions(+), 9 deletions(-) diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py index 1bbf5be..f33ffd6 100644 --- a/code/train_resnet_bins.py +++ b/code/train_resnet_bins.py @@ -91,10 +91,10 @@ if not os.path.exists('output/snapshots'): os.makedirs('output/snapshots') - # ResNet18 with 3 outputs. - model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) - + # ResNet50 with 3 outputs. + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), @@ -109,8 +109,8 @@ model.cuda(gpu) criterion = nn.CrossEntropyLoss() - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}], + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) print 'Ready to train network.' @@ -137,11 +137,11 @@ print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # Save models at even numbered epochs. + # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0