From 9a02f63f4d5692399a95cb889e8f7629a165c28e Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 21 九月 2017 05:56:20 +0800
Subject: [PATCH] next

---
 code/hopenet.py |  113 +++++++++++++-------------------------------------------
 1 files changed, 26 insertions(+), 87 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index 1b94fa1..b02beec 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -1,8 +1,8 @@
 import torch
 import torch.nn as nn
-import torchvision.datasets as dsets
 from torch.autograd import Variable
 import math
+import torch.nn.functional as F
 
 # CNN Model (2 conv layer)
 class Simple_CNN(nn.Module):
@@ -41,7 +41,7 @@
 
 class Hopenet(nn.Module):
     # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins):
+    def __init__(self, block, layers, num_bins, iter_ref):
         self.inplanes = 64
         super(Hopenet, self).__init__()
         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
@@ -58,78 +58,12 @@
         self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
         self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
 
-        for m in self.modules():
-            if isinstance(m, nn.Conv2d):
-                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
-                m.weight.data.normal_(0, math.sqrt(2. / n))
-            elif isinstance(m, nn.BatchNorm2d):
-                m.weight.data.fill_(1)
-                m.bias.data.zero_()
+        self.softmax = nn.Softmax()
+        self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
 
-    def _make_layer(self, block, planes, blocks, stride=1):
-        downsample = None
-        if stride != 1 or self.inplanes != planes * block.expansion:
-            downsample = nn.Sequential(
-                nn.Conv2d(self.inplanes, planes * block.expansion,
-                          kernel_size=1, stride=stride, bias=False),
-                nn.BatchNorm2d(planes * block.expansion),
-            )
+        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
 
-        layers = []
-        layers.append(block(self.inplanes, planes, stride, downsample))
-        self.inplanes = planes * block.expansion
-        for i in range(1, blocks):
-            layers.append(block(self.inplanes, planes))
-
-        return nn.Sequential(*layers)
-
-    def forward(self, x):
-        x = self.conv1(x)
-        x = self.bn1(x)
-        x = self.relu(x)
-        x = self.maxpool(x)
-
-        x = self.layer1(x)
-        x = self.layer2(x)
-        x = self.layer3(x)
-        x = self.layer4(x)
-
-        x = self.avgpool(x)
-        x = x.view(x.size(0), -1)
-        yaw = self.fc_yaw(x)
-        pitch = self.fc_pitch(x)
-        roll = self.fc_roll(x)
-
-        return yaw, pitch, roll
-
-class Hopenet_shape(nn.Module):
-    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins, shape_bins):
-        self.inplanes = 64
-        super(Hopenet_shape, self).__init__()
-        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-                               bias=False)
-        self.bn1 = nn.BatchNorm2d(64)
-        self.relu = nn.ReLU(inplace=True)
-        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-        self.layer1 = self._make_layer(block, 64, layers[0])
-        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
-        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
-        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-        self.avgpool = nn.AvgPool2d(7)
-        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins)
-        self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins)
+        self.iter_ref = iter_ref
 
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
@@ -169,20 +103,25 @@
 
         x = self.avgpool(x)
         x = x.view(x.size(0), -1)
-        yaw = self.fc_yaw(x)
-        pitch = self.fc_pitch(x)
-        roll = self.fc_roll(x)
+        pre_yaw = self.fc_yaw(x)
+        pre_pitch = self.fc_pitch(x)
+        pre_roll = self.fc_roll(x)
 
-        shape = []
-        shape.append(self.fc_shape_0(x))
-        shape.append(self.fc_shape_1(x))
-        shape.append(self.fc_shape_2(x))
-        shape.append(self.fc_shape_3(x))
-        shape.append(self.fc_shape_4(x))
-        shape.append(self.fc_shape_5(x))
-        shape.append(self.fc_shape_6(x))
-        shape.append(self.fc_shape_7(x))
-        shape.append(self.fc_shape_8(x))
-        shape.append(self.fc_shape_9(x))
+        yaw = self.softmax(pre_yaw)
+        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
+        pitch = self.softmax(pre_pitch)
+        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
+        roll = self.softmax(pre_roll)
+        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
+        yaw = yaw.view(yaw.size(0), 1)
+        pitch = pitch.view(pitch.size(0), 1)
+        roll = roll.view(roll.size(0), 1)
+        angles = []
+        preangles = torch.cat([yaw, pitch, roll], 1)
+        angles.append(preangles)
 
-        return yaw, pitch, roll, shape
+        # angles predicts the residual
+        for idx in xrange(self.iter_ref):
+            angles.append(self.fc_finetune(torch.cat((preangles, x), 1)))
+
+        return pre_yaw, pre_pitch, pre_roll, angles

--
Gitblit v1.8.0