From 9a02f63f4d5692399a95cb889e8f7629a165c28e Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 21 九月 2017 05:56:20 +0800 Subject: [PATCH] next --- code/hopenet.py | 113 +++++++++++++------------------------------------------- 1 files changed, 26 insertions(+), 87 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 1b94fa1..b02beec 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable import math +import torch.nn.functional as F # CNN Model (2 conv layer) class Simple_CNN(nn.Module): @@ -41,7 +41,7 @@ class Hopenet(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins): + def __init__(self, block, layers, num_bins, iter_ref): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, @@ -58,78 +58,12 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() + self.softmax = nn.Softmax() + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, - kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - x = self.conv1(x) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - - x = self.avgpool(x) - x = x.view(x.size(0), -1) - yaw = self.fc_yaw(x) - pitch = self.fc_pitch(x) - roll = self.fc_roll(x) - - return yaw, pitch, roll - -class Hopenet_shape(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, shape_bins): - self.inplanes = 64 - super(Hopenet_shape, self).__init__() - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins) - self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins) + self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -169,20 +103,25 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) - yaw = self.fc_yaw(x) - pitch = self.fc_pitch(x) - roll = self.fc_roll(x) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) - shape = [] - shape.append(self.fc_shape_0(x)) - shape.append(self.fc_shape_1(x)) - shape.append(self.fc_shape_2(x)) - shape.append(self.fc_shape_3(x)) - shape.append(self.fc_shape_4(x)) - shape.append(self.fc_shape_5(x)) - shape.append(self.fc_shape_6(x)) - shape.append(self.fc_shape_7(x)) - shape.append(self.fc_shape_8(x)) - shape.append(self.fc_shape_9(x)) + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + angles = [] + preangles = torch.cat([yaw, pitch, roll], 1) + angles.append(preangles) - return yaw, pitch, roll, shape + # angles predicts the residual + for idx in xrange(self.iter_ref): + angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) + + return pre_yaw, pre_pitch, pre_roll, angles -- Gitblit v1.8.0