From abe876183052e9da9c3d633e41386c5c1f4fc1e6 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 05:51:42 +0800 Subject: [PATCH] Before adding refinement layer --- code/train.py | 56 +++++++++++++++++++++++++++----------------------------- 1 files changed, 27 insertions(+), 29 deletions(-) diff --git a/code/train.py b/code/train.py index f98bbc3..5d7fc7d 100644 --- a/code/train.py +++ b/code/train.py @@ -95,17 +95,22 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # ResNet18 - model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) print 'Loading data.' - transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), - transforms.ToTensor()]) + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), + # transforms.ToTensor()]) - pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, + transformations = transforms.Compose([transforms.Scale(250), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -113,11 +118,10 @@ num_workers=2) model.cuda(gpu) - criterion = nn.CrossEntropyLoss() - reg_criterion = nn.MSELoss() + criterion = nn.CrossEntropyLoss().cuda() + reg_criterion = nn.MSELoss().cuda() # Regression loss coefficient alpha = 0.01 - lsm = nn.Softmax() idx_tensor = [idx for idx in xrange(66)] idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) @@ -126,32 +130,28 @@ {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr}], - # lr = args.lr, momentum=0.9) - # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - # lr = args.lr) + # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # lr = args.lr, + # momentum = 0.9, weight_decay=0.01) print 'Ready to train network.' for epoch in range(num_epochs): for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images).cuda(gpu) - label_yaw = Variable(labels[:,0]).cuda(gpu) - label_pitch = Variable(labels[:,1]).cuda(gpu) - label_roll = Variable(labels[:,2]).cuda(gpu) + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) optimizer.zero_grad() + model.zero_grad() + yaw, pitch, roll = model(images) + # Cross entropy loss loss_yaw = criterion(yaw, label_yaw) loss_pitch = criterion(pitch, label_pitch) loss_roll = criterion(roll, label_roll) - - # loss_seq = [loss_yaw, loss_pitch, loss_roll] - # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - # torch.autograd.backward(loss_seq, grad_seq) - # optimizer.step() # MSE loss yaw_predicted = F.softmax(yaw) @@ -166,15 +166,13 @@ loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - # print yaw_predicted[0], label_yaw.data[0] - + # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - model.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -186,13 +184,13 @@ %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/resnet18_sgd_iter_'+ str(i+1) + '.pkl') + # 'output/snapshots/resnet50_lbatch_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet18_sgd_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_norm_30rot_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet18_sgd_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_norm_30rot_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0