From abe876183052e9da9c3d633e41386c5c1f4fc1e6 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 05:51:42 +0800 Subject: [PATCH] Before adding refinement layer --- code/train.py | 25 +++++++++++++++++-------- 1 files changed, 17 insertions(+), 8 deletions(-) diff --git a/code/train.py b/code/train.py index ec9e63f..5d7fc7d 100644 --- a/code/train.py +++ b/code/train.py @@ -102,10 +102,15 @@ print 'Loading data.' - transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), - transforms.ToTensor()]) + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), + # transforms.ToTensor()]) - pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, + transformations = transforms.Compose([transforms.Scale(250), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, @@ -124,6 +129,10 @@ optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) + # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # lr = args.lr, + # momentum = 0.9, weight_decay=0.01) print 'Ready to train network.' @@ -173,15 +182,15 @@ if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - if epoch == 0: - torch.save(model.state_dict(), - 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/resnet50_lbatch_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_norm_30rot_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_norm_30rot_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0