From af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:29:51 +0800 Subject: [PATCH] Fixed stuff --- code/datasets.py | 378 +++++++++++++++++++++++++++++++++++++++++++---------- 1 files changed, 304 insertions(+), 74 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 4594cbc..a28c584 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,17 +1,24 @@ -import numpy as np -import torch -import cv2 -from torch.utils.data.dataset import Dataset import os -from PIL import Image +import numpy as np +import cv2 + +import torch +from torch.utils.data.dataset import Dataset +from torchvision import transforms + +from PIL import Image, ImageFilter import utils -def stack_grayscale_tensor(tensor): - tensor = torch.cat([tensor, tensor, tensor], 0) - return tensor +def get_list_from_filenames(file_path): + # input: relative path to .txt file with file names + # output: list of relative path names + with open(file_path) as f: + lines = f.read().splitlines() + return lines class Pose_300W_LP(Dataset): + # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -31,18 +38,19 @@ mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - k = 0.15 - x_min -= k * abs(x_max - x_min) - y_min -= 4 * k * abs(y_max - y_min) - x_max += k * abs(x_max - x_min) - y_max += 0.4 * k * abs(y_max - y_min) + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians @@ -51,6 +59,19 @@ pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 @@ -58,12 +79,92 @@ # Get shape shape = np.load(shape_path) + # Get target tensors labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) - return img, labels, self.X_train[index] + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 122,450 + return self.length + +class Pose_300W_LP_random_ds(Dataset): + # 300W-LP dataset with random downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + # k = 0.2 to 0.40 + k = np.random.random_sample() * 0.2 + 0.2 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_fro # Head pose from AFLW2000 datasetp.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + + ds = 1 + np.random.randint(0,4) * 5 + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Blur? + rnd = np.random.random_sample() + if rnd < 0.05: + img = img.filter(ImageFilter.BLUR) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape + shape = np.load(shape_path) + + # Get target tensors + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] def __len__(self): # 122,450 @@ -88,18 +189,19 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - k = 0.15 - x_min -= k * abs(x_max - x_min) - y_min -= 4 * k * abs(y_max - y_min) - x_max += k * abs(x_max - x_min) - y_max += 0.4 * k * abs(y_max - y_min) + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians @@ -111,14 +213,128 @@ # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) - return img, labels, self.X_train[index] + return img, labels, cont_labels, self.X_train[index] def __len__(self): # 2,000 + return self.length + +class AFLW2000_ds(Dataset): + # AFLW2000 dataset with fixed downsampling + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face loosely + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + ds = 3 # downsampling factor + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) + img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + +class AFLW_aug(Dataset): + # AFLW dataset with flipping + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in radians + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] + # And convert to degrees. + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Fix the roll in AFLW + roll *= -1 + + # Augment + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # train: 18,863 + # test: 1,966 return self.length class AFLW(Dataset): @@ -148,17 +364,17 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW - if yaw < 0: - roll *= -1 + # Fix the roll in AFLW + roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) - return img, labels, self.X_train[index] + return img, labels, cont_labels, self.X_train[index] def __len__(self): # train: 18,863 @@ -192,30 +408,35 @@ line = annot.readline().split(' ') yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] - # Crop the face - margin = 40 - x_min = float(line[4]) - margin - y_min = float(line[5]) - margin - x_max = float(line[6]) + margin - y_max = float(line[7]) + margin + # Crop the face loosely + k = 0.32 + x1 = float(line[4]) + y1 = float(line[5]) + x2 = float(line[6]) + y2 = float(line[7]) + x1 -= 0.8 * k * abs(x2 - x1) + y1 -= 2 * k * abs(y2 - y1) + x2 += 0.8 * k * abs(x2 - x1) + y2 += 1 * k * abs(y2 - y1) - img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + img = img.crop((int(x1), int(y1), int(x2), int(y2))) # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) - return img, labels, self.X_train[index] + return img, labels, cont_labels, self.X_train[index] def __len__(self): # Around 200 return self.length -class LP_300W_LP(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): +class BIWI(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -229,57 +450,66 @@ self.length = len(filename_list) def __getitem__(self, index): - img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) img = img.convert(self.image_mode) - mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') + pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) - # Crop the face - # TODO: Change bounding box. - pt2d = utils.get_pt2d_from_mat(mat_path) - x_min = min(pt2d[0,:]) - y_min = min(pt2d[1,:]) - x_max = max(pt2d[0,:]) - y_max = max(pt2d[1,:]) + y_train_list = self.y_train[index].split('/') + bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) - k = 0.15 - x_min -= k * abs(x_max - x_min) - y_min -= 4 * k * abs(y_max - y_min) - x_max += k * abs(x_max - x_min) - y_max += 0.4 * k * abs(y_max - y_min) + # Load bounding box + bbox = open(bbox_path, 'r') + line = bbox.readline().split(' ') + if len(line) < 4: + x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] + else: + x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] + bbox.close() + + # Load pose in degrees + pose_annot = open(pose_path, 'r') + R = [] + for line in pose_annot: + line = line.strip('\n').split(' ') + l = [] + if line[0] != '': + for nb in line: + if nb == '': + continue + l.append(float(nb)) + R.append(l) + + R = np.array(R) + T = R[3,:] + R = R[:3,:] + pose_annot.close() + + R = np.transpose(R) + + roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi + yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi + pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi + + # Loosely crop face + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) - # We get the pose in radians - pose = utils.get_ypr_from_mat(mat_path) - # And convert to degrees. - pitch = pose[0] * 180 / np.pi - yaw = pose[1] * 180 / np.pi - roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 - # Get shape binned shape - shape = np.load(shape_path) - - # Convert pt2d to maps of image size - # that have - - labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + labels = torch.LongTensor(binned_pose) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) if self.transform is not None: img = self.transform(img) - return img, labels, self.X_train[index] + return img, labels, cont_labels, self.X_train[index] def __len__(self): - # 122,450 + # 15,667 return self.length - - -def get_list_from_filenames(file_path): - # input: relative path to .txt file with file names - # output: list of relative path names - with open(file_path) as f: - lines = f.read().splitlines() - return lines -- Gitblit v1.8.0