From af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0 Mon Sep 17 00:00:00 2001
From: natanielruiz <nruiz9@gatech.edu>
Date: 星期一, 30 十月 2017 06:29:51 +0800
Subject: [PATCH] Fixed stuff

---
 code/datasets.py |  378 +++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 304 insertions(+), 74 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 4594cbc..a28c584 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -1,17 +1,24 @@
-import numpy as np
-import torch
-import cv2
-from torch.utils.data.dataset import Dataset
 import os
-from PIL import Image
+import numpy as np
+import cv2
+
+import torch
+from torch.utils.data.dataset import Dataset
+from torchvision import transforms
+
+from PIL import Image, ImageFilter
 
 import utils
 
-def stack_grayscale_tensor(tensor):
-    tensor = torch.cat([tensor, tensor, tensor], 0)
-    return tensor
+def get_list_from_filenames(file_path):
+    # input:    relative path to .txt file with file names
+    # output:   list of relative path names
+    with open(file_path) as f:
+        lines = f.read().splitlines()
+    return lines
 
 class Pose_300W_LP(Dataset):
+    # Head pose from 300W-LP dataset
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
@@ -31,18 +38,19 @@
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
         shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        k = 0.15
-        x_min -= k * abs(x_max - x_min)
-        y_min -= 4 * k * abs(y_max - y_min)
-        x_max += k * abs(x_max - x_min)
-        y_max += 0.4 * k * abs(y_max - y_min)
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
@@ -51,6 +59,19 @@
         pitch = pose[0] * 180 / np.pi
         yaw = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
         # Bin values
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
@@ -58,12 +79,92 @@
         # Get shape
         shape = np.load(shape_path)
 
+        # Get target tensors
         labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, labels, self.X_train[index]
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
+class Pose_300W_LP_random_ds(Dataset):
+    # 300W-LP dataset with random downsampling
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+
+        # Crop the face loosely
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_fro    # Head pose from AFLW2000 datasetp.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+
+        ds = 1 + np.random.randint(0,4) * 5
+        original_size = img.size
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape
+        shape = np.load(shape_path)
+
+        # Get target tensors
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
@@ -88,18 +189,19 @@
         img = img.convert(self.image_mode)
         mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
-        # Crop the face
+        # Crop the face loosely
         pt2d = utils.get_pt2d_from_mat(mat_path)
+
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        k = 0.15
-        x_min -= k * abs(x_max - x_min)
-        y_min -= 4 * k * abs(y_max - y_min)
-        x_max += k * abs(x_max - x_min)
-        y_max += 0.4 * k * abs(y_max - y_min)
+        k = 0.20
+        x_min -= 2 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 2 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
@@ -111,14 +213,128 @@
         # Bin values
         bins = np.array(range(-99, 102, 3))
         labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, labels, self.X_train[index]
+        return img, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # 2,000
+        return self.length
+
+class AFLW2000_ds(Dataset):
+    # AFLW2000 dataset with fixed downsampling
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face loosely
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.20
+        x_min -= 2 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 2 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        ds = 3  # downsampling factor
+        original_size = img.size
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # 2,000
+        return self.length
+
+class AFLW_aug(Dataset):
+    # AFLW dataset with flipping
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # We get the pose in radians
+        annot = open(txt_path, 'r')
+        line = annot.readline().split(' ')
+        pose = [float(line[1]), float(line[2]), float(line[3])]
+        # And convert to degrees.
+        yaw = pose[0] * 180 / np.pi
+        pitch = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Fix the roll in AFLW
+        roll *= -1
+
+        # Augment
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # train: 18,863
+        # test: 1,966
         return self.length
 
 class AFLW(Dataset):
@@ -148,17 +364,17 @@
         yaw = pose[0] * 180 / np.pi
         pitch = pose[1] * 180 / np.pi
         roll = pose[2] * 180 / np.pi
-        # Something weird with the roll in AFLW
-        if yaw < 0:
-            roll *= -1
+        # Fix the roll in AFLW
+        roll *= -1
         # Bin values
         bins = np.array(range(-99, 102, 3))
         labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, labels, self.X_train[index]
+        return img, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # train: 18,863
@@ -192,30 +408,35 @@
         line = annot.readline().split(' ')
         yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
 
-        # Crop the face
-        margin = 40
-        x_min = float(line[4]) - margin
-        y_min = float(line[5]) - margin
-        x_max = float(line[6]) + margin
-        y_max = float(line[7]) + margin
+        # Crop the face loosely
+        k = 0.32
+        x1 = float(line[4])
+        y1 = float(line[5])
+        x2 = float(line[6])
+        y2 = float(line[7])
+        x1 -= 0.8 * k * abs(x2 - x1)
+        y1 -= 2 * k * abs(y2 - y1)
+        x2 += 0.8 * k * abs(x2 - x1)
+        y2 += 1 * k * abs(y2 - y1)
 
-        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+        img = img.crop((int(x1), int(y1), int(x2), int(y2)))
 
         # Bin values
         bins = np.array(range(-99, 102, 3))
         labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, labels, self.X_train[index]
+        return img, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # Around 200
         return self.length
 
-class LP_300W_LP(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+class BIWI(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -229,57 +450,66 @@
         self.length = len(filename_list)
 
     def __getitem__(self, index):
-        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext))
         img = img.convert(self.image_mode)
-        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+        pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext)
 
-        # Crop the face
-        # TODO: Change bounding box.
-        pt2d = utils.get_pt2d_from_mat(mat_path)
-        x_min = min(pt2d[0,:])
-        y_min = min(pt2d[1,:])
-        x_max = max(pt2d[0,:])
-        y_max = max(pt2d[1,:])
+        y_train_list = self.y_train[index].split('/')
+        bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext)
 
-        k = 0.15
-        x_min -= k * abs(x_max - x_min)
-        y_min -= 4 * k * abs(y_max - y_min)
-        x_max += k * abs(x_max - x_min)
-        y_max += 0.4 * k * abs(y_max - y_min)
+        # Load bounding box
+        bbox = open(bbox_path, 'r')
+        line = bbox.readline().split(' ')
+        if len(line) < 4:
+            x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1]
+        else:
+            x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])]
+        bbox.close()
+
+        # Load pose in degrees
+        pose_annot = open(pose_path, 'r')
+        R = []
+        for line in pose_annot:
+            line = line.strip('\n').split(' ')
+            l = []
+            if line[0] != '':
+                for nb in line:
+                    if nb == '':
+                        continue
+                    l.append(float(nb))
+                R.append(l)
+
+        R = np.array(R)
+        T = R[3,:]
+        R = R[:3,:]
+        pose_annot.close()
+
+        R = np.transpose(R)
+
+        roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
+        yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+
+        # Loosely crop face
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
-        # We get the pose in radians
-        pose = utils.get_ypr_from_mat(mat_path)
-        # And convert to degrees.
-        pitch = pose[0] * 180 / np.pi
-        yaw = pose[1] * 180 / np.pi
-        roll = pose[2] * 180 / np.pi
         # Bin values
         bins = np.array(range(-99, 102, 3))
         binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
 
-        # Get shape binned shape
-        shape = np.load(shape_path)
-
-        # Convert pt2d to maps of image size
-        # that have
-
-        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        labels = torch.LongTensor(binned_pose)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, labels, self.X_train[index]
+        return img, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
-        # 122,450
+        # 15,667
         return self.length
-
-
-def get_list_from_filenames(file_path):
-    # input:    relative path to .txt file with file names
-    # output:   list of relative path names
-    with open(file_path) as f:
-        lines = f.read().splitlines()
-    return lines

--
Gitblit v1.8.0