From af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0 Mon Sep 17 00:00:00 2001
From: natanielruiz <nruiz9@gatech.edu>
Date: 星期一, 30 十月 2017 06:29:51 +0800
Subject: [PATCH] Fixed stuff

---
 code/test_resnet50_regression.py |   46 ++++++++++++++++++++++++++--------------------
 1 files changed, 26 insertions(+), 20 deletions(-)

diff --git a/code/test_resnet50_regression.py b/code/test_resnet50_regression.py
index 85207f8..6945269 100644
--- a/code/test_resnet50_regression.py
+++ b/code/test_resnet50_regression.py
@@ -1,4 +1,9 @@
+import sys, os, argparse
+
 import numpy as np
+import cv2
+import matplotlib.pyplot as plt
+
 import torch
 import torch.nn as nn
 from torch.autograd import Variable
@@ -8,15 +13,7 @@
 import torchvision
 import torch.nn.functional as F
 
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import utils
+import datasets, hopenet, utils
 
 def parse_args():
     """Parse input arguments."""
@@ -39,6 +36,13 @@
 
     return args
 
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    model_dict.update(snapshot)
+    model.load_state_dict(model_dict)
+
 if __name__ == '__main__':
     args = parse_args()
 
@@ -51,7 +55,7 @@
     print 'Loading snapshot.'
     # Load snapshot
     saved_state_dict = torch.load(snapshot_path)
-    model.load_state_dict(saved_state_dict)
+    load_filtered_state_dict(model, saved_state_dict)
 
     print 'Loading data.'
 
@@ -59,18 +63,20 @@
     transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    if args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
+    if args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP_random_ds':
+        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW2000_ds':
-        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
-                                transformations)
+        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'BIWI':
         pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW':
         pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
@@ -111,8 +117,7 @@
         pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
         roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
 
-        # Save images with pose cube.
-        # TODO: fix for larger batch size
+        # Save first image in batch with pose cube or axis.
         if args.save_viz:
             name = name[0]
             if args.dataset == 'BIWI':
@@ -122,7 +127,8 @@
             if args.batch_size == 1:
                 error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
                 cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
+            # utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], size=100)
+            utils.draw_axis(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], tdx = 200, tdy= 200, size=100)
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +

--
Gitblit v1.8.0