From af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:29:51 +0800 Subject: [PATCH] Fixed stuff --- code/train_preangles.py | 198 ++++++++++++++----------------------------------- 1 files changed, 58 insertions(+), 140 deletions(-) diff --git a/code/train_preangles.py b/code/train_preangles.py index 3179c24..1fe626c 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,23 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} def parse_args(): """Parse input arguments.""" @@ -32,8 +22,6 @@ parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', default=5, type=int) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=16, type=int) @@ -46,15 +34,14 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + args = parser.parse_args() return args def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) + b = [model.conv1, model.bn1, model.fc_finetune] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -64,11 +51,7 @@ def get_non_ignored_params(model): # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) + b = [model.layer1, model.layer2, model.layer3, model.layer4] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -77,10 +60,8 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) + # Generator function that yields fc layer params. + b = [model.fc_yaw, model.fc_pitch, model.fc_roll] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -89,11 +70,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -101,20 +79,15 @@ cudnn.enabled = True num_epochs = args.num_epochs - num_epochs_ft = args.num_epochs_ft batch_size = args.batch_size gpu = args.gpu_id if not os.path.exists('output/snapshots'): os.makedirs('output/snapshots') - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 + # ResNet50 structure model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) print 'Loading data.' @@ -122,144 +95,89 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2) model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() + criterion = nn.CrossEntropyLoss().cuda(gpu) + reg_criterion = nn.MSELoss().cuda(gpu) # Regression loss coefficient alpha = args.alpha - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 2}], + {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) print 'Ready to train network.' - - print 'First phase of training.' for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) + for i, (images, labels, cont_labels, name) in enumerate(train_loader): + images = Variable(images).cuda(gpu) - optimizer.zero_grad() - model.zero_grad() + # Binned labels + label_yaw = Variable(labels[:,0]).cuda(gpu) + label_pitch = Variable(labels[:,1]).cuda(gpu) + label_roll = Variable(labels[:,2]).cuda(gpu) - pre_yaw, pre_pitch, pre_roll, angles = model(images) + # Continuous labels + label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) + label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) + label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) + + # Forward pass + yaw, pitch, roll, angles = model(images) # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) + loss_yaw = criterion(yaw, label_yaw) + loss_pitch = criterion(pitch, label_pitch) + loss_roll = criterion(roll, label_roll) # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) + yaw_predicted = angles[:,0] + pitch_predicted = angles[:,1] + roll_predicted = angles[:,2] - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # print yaw_predicted, label_yaw.float(), loss_reg_yaw # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + optimizer.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: print 'Taking snapshot...' torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) - - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0