From af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0 Mon Sep 17 00:00:00 2001
From: natanielruiz <nruiz9@gatech.edu>
Date: 星期一, 30 十月 2017 06:29:51 +0800
Subject: [PATCH] Fixed stuff

---
 code/train_preangles.py |  198 ++++++++++++++-----------------------------------
 1 files changed, 58 insertions(+), 140 deletions(-)

diff --git a/code/train_preangles.py b/code/train_preangles.py
index 3179c24..1fe626c 100644
--- a/code/train_preangles.py
+++ b/code/train_preangles.py
@@ -1,4 +1,9 @@
+import sys, os, argparse, time
+
 import numpy as np
+import cv2
+import matplotlib.pyplot as plt
+
 import torch
 import torch.nn as nn
 from torch.autograd import Variable
@@ -8,23 +13,8 @@
 import torch.backends.cudnn as cudnn
 import torch.nn.functional as F
 
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
+import datasets, hopenet
 import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
 
 def parse_args():
     """Parse input arguments."""
@@ -32,8 +22,6 @@
     parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
             default=0, type=int)
     parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
           default=5, type=int)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=16, type=int)
@@ -46,15 +34,14 @@
     parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
     parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
           default=0.001, type=float)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
+
     args = parser.parse_args()
     return args
 
 def get_ignored_params(model):
     # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.fc_finetune)
+    b = [model.conv1, model.bn1, model.fc_finetune]
     for i in range(len(b)):
         for module_name, module in b[i].named_modules():
             if 'bn' in module_name:
@@ -64,11 +51,7 @@
 
 def get_non_ignored_params(model):
     # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
+    b = [model.layer1, model.layer2, model.layer3, model.layer4]
     for i in range(len(b)):
         for module_name, module in b[i].named_modules():
             if 'bn' in module_name:
@@ -77,10 +60,8 @@
                 yield param
 
 def get_fc_params(model):
-    b = []
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
+    # Generator function that yields fc layer params.
+    b = [model.fc_yaw, model.fc_pitch, model.fc_roll]
     for i in range(len(b)):
         for module_name, module in b[i].named_modules():
             for name, param in module.named_parameters():
@@ -89,11 +70,8 @@
 def load_filtered_state_dict(model, snapshot):
     # By user apaszke from discuss.pytorch.org
     model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
     snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
     model_dict.update(snapshot)
-    # 3. load the new state dict
     model.load_state_dict(model_dict)
 
 if __name__ == '__main__':
@@ -101,20 +79,15 @@
 
     cudnn.enabled = True
     num_epochs = args.num_epochs
-    num_epochs_ft = args.num_epochs_ft
     batch_size = args.batch_size
     gpu = args.gpu_id
 
     if not os.path.exists('output/snapshots'):
         os.makedirs('output/snapshots')
 
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
+    # ResNet50 structure
     model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
+    load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth'))
 
     print 'Loading data.'
 
@@ -122,144 +95,89 @@
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
-                                transformations)
+    if args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP_random_ds':
+        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
+
     train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=batch_size,
                                                shuffle=True,
                                                num_workers=2)
 
     model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
+    criterion = nn.CrossEntropyLoss().cuda(gpu)
+    reg_criterion = nn.MSELoss().cuda(gpu)
     # Regression loss coefficient
     alpha = args.alpha
 
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
-
     optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                    lr = args.lr)
 
     print 'Ready to train network.'
-
-    print 'First phase of training.'
     for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
+            images = Variable(images).cuda(gpu)
 
-            optimizer.zero_grad()
-            model.zero_grad()
+            # Binned labels
+            label_yaw = Variable(labels[:,0]).cuda(gpu)
+            label_pitch = Variable(labels[:,1]).cuda(gpu)
+            label_roll = Variable(labels[:,2]).cuda(gpu)
 
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+            # Continuous labels
+            label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu)
+            label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu)
+            label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu)
+
+            # Forward pass
+            yaw, pitch, roll, angles = model(images)
 
             # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
+            loss_yaw = criterion(yaw, label_yaw)
+            loss_pitch = criterion(pitch, label_pitch)
+            loss_roll = criterion(roll, label_roll)
 
             # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
+            yaw_predicted = angles[:,0]
+            pitch_predicted = angles[:,1]
+            roll_predicted = angles[:,2]
 
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
             loss_pitch += alpha * loss_reg_pitch
             loss_roll += alpha * loss_reg_roll
 
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            optimizer.zero_grad()
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
 
             if (i+1) % 100 == 0:
                 print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
             'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
-
-    print 'Second phase of training (finetuning layer).'
-    for epoch in range(num_epochs_ft):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-            label_angles = Variable(labels[:,:3].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
-                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0