From b2316888f61893aff1229c24002d903df79499cb Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 13 九月 2017 21:16:31 +0800 Subject: [PATCH] Removed unecessary testing scripts --- /dev/null | 149 ------------------------------------------------- code/batch_testing_preangles.py | 2 code/test.py | 13 ++++ code/test_preangles.py | 15 ++++ 4 files changed, 26 insertions(+), 153 deletions(-) diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py index 11390b0..bf0d32b 100644 --- a/code/batch_testing_preangles.py +++ b/code/batch_testing_preangles.py @@ -50,7 +50,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) diff --git a/code/test.py b/code/test.py index ca7a820..f2baf63 100644 --- a/code/test.py +++ b/code/test.py @@ -34,6 +34,7 @@ parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -64,8 +65,18 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) diff --git a/code/test_AFLW.py b/code/test_AFLW.py deleted file mode 100644 index c0b8f1f..0000000 --- a/code/test_AFLW.py +++ /dev/null @@ -1,146 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll, angles = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_AFLW_preangles.py b/code/test_AFLW_preangles.py deleted file mode 100644 index 8f8a194..0000000 --- a/code/test_AFLW_preangles.py +++ /dev/null @@ -1,149 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = args.snapshot - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll, angles = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_biwi.py b/code/test_biwi.py deleted file mode 100644 index 0dfa915..0000000 --- a/code/test_biwi.py +++ /dev/null @@ -1,149 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_biwi_preangles.py b/code/test_biwi_preangles.py deleted file mode 100644 index a64dab9..0000000 --- a/code/test_biwi_preangles.py +++ /dev/null @@ -1,149 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = args.snapshot - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.CenterCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll, angles = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_preangles.py b/code/test_preangles.py index 4aedfd8..f2039f2 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -33,6 +33,7 @@ default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -48,7 +49,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -66,8 +67,18 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) -- Gitblit v1.8.0