From b730bbd6ea565d7689964661c53a6074654b5d3b Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期一, 30 十月 2017 05:30:52 +0800 Subject: [PATCH] next --- code/hopenet.py | 125 ----------------------------------------- 1 files changed, 0 insertions(+), 125 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index cd810e3..129ff63 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,41 +4,6 @@ import math import torch.nn.functional as F -# CNN Model (2 conv layer) -class Simple_CNN(nn.Module): - def __init__(self): - super(Simple_CNN, self).__init__() - self.layer1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=0), - nn.BatchNorm2d(64), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer2 = nn.Sequential( - nn.Conv2d(64, 128, kernel_size=3, padding=0), - nn.BatchNorm2d(128), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer3 = nn.Sequential( - nn.Conv2d(128, 256, kernel_size=3, padding=0), - nn.BatchNorm2d(256), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer4 = nn.Sequential( - nn.Conv2d(256, 512, kernel_size=3, padding=0), - nn.BatchNorm2d(512), - nn.ReLU(), - nn.MaxPool2d(2)) - self.fc = nn.Linear(17*17*512, 3) - - def forward(self, x): - out = self.layer1(x) - out = self.layer2(out) - out = self.layer3(out) - out = self.layer4(out) - out = out.view(out.size(0), -1) - out = self.fc(out) - return out - class Hopenet(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins, iter_ref): @@ -224,93 +189,3 @@ pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll - -class Hopenet_new(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins): - self.inplanes = 64 - super(Hopenet_new, self).__init__() - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - - self.softmax = nn.Softmax() - self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3) - self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False) - self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1) - - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, - kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - x = self.conv1(x) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x_interm = self.conv1x1(x) - x_interm = self.relu(x_interm) - x_interm = self.maxpool_interm(x_interm) - x_interm = x_interm.view(x_interm.size(0), -1) - - x = self.layer4(x) - - x = self.avgpool(x) - x = x.view(x.size(0), -1) - pre_yaw = self.fc_yaw(x) - pre_pitch = self.fc_pitch(x) - pre_roll = self.fc_roll(x) - - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - preangles = torch.cat([yaw, pitch, roll], 1) - - # angles predicts the residual - residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1)) - final_angles = preangles + residuals - - return pre_yaw, pre_pitch, pre_roll, preangles, final_angles -- Gitblit v1.8.0