From b730bbd6ea565d7689964661c53a6074654b5d3b Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期一, 30 十月 2017 05:30:52 +0800 Subject: [PATCH] next --- code/hopenet.py | 37 +------------------------------------ 1 files changed, 1 insertions(+), 36 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 7b5f764..129ff63 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,41 +4,6 @@ import math import torch.nn.functional as F -# CNN Model (2 conv layer) -class Simple_CNN(nn.Module): - def __init__(self): - super(Simple_CNN, self).__init__() - self.layer1 = nn.Sequential( - nn.Conv2d(3, 64, kernel_size=3, padding=0), - nn.BatchNorm2d(64), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer2 = nn.Sequential( - nn.Conv2d(64, 128, kernel_size=3, padding=0), - nn.BatchNorm2d(128), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer3 = nn.Sequential( - nn.Conv2d(128, 256, kernel_size=3, padding=0), - nn.BatchNorm2d(256), - nn.ReLU(), - nn.MaxPool2d(2)) - self.layer4 = nn.Sequential( - nn.Conv2d(256, 512, kernel_size=3, padding=0), - nn.BatchNorm2d(512), - nn.ReLU(), - nn.MaxPool2d(2)) - self.fc = nn.Linear(17*17*512, 3) - - def forward(self, x): - out = self.layer1(x) - out = self.layer2(out) - out = self.layer3(out) - out = self.layer4(out) - out = out.view(out.size(0), -1) - out = self.fc(out) - return out - class Hopenet(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins, iter_ref): @@ -122,7 +87,7 @@ # angles predicts the residual for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) + angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) return pre_yaw, pre_pitch, pre_roll, angles -- Gitblit v1.8.0