From b74b9c54247177c82493f180617d7551de8e2bb1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 26 九月 2017 03:47:06 +0800 Subject: [PATCH] Before SR experiments --- code/hopenet.py | 189 +++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 188 insertions(+), 1 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index e6f8f50..7b5f764 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,7 +1,8 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable +import math +import torch.nn.functional as F # CNN Model (2 conv layer) class Simple_CNN(nn.Module): @@ -37,3 +38,189 @@ out = out.view(out.size(0), -1) out = self.fc(out) return out + +class Hopenet(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins, iter_ref): + self.inplanes = 64 + super(Hopenet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + self.softmax = nn.Softmax() + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + + self.iter_ref = iter_ref + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) + + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + angles = [] + preangles = torch.cat([yaw, pitch, roll], 1) + angles.append(preangles) + + # angles predicts the residual + for idx in xrange(self.iter_ref): + angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) + + return pre_yaw, pre_pitch, pre_roll, angles + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000): + self.inplanes = 64 + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_angles = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc_angles(x) + + return x + +class AlexNet(nn.Module): + + def __init__(self, num_bins): + super(AlexNet, self).__init__() + self.features = nn.Sequential( + nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(64, 192, kernel_size=5, padding=2), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + nn.Conv2d(192, 384, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(384, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(256, 256, kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.MaxPool2d(kernel_size=3, stride=2), + ) + self.classifier = nn.Sequential( + nn.Dropout(), + nn.Linear(256 * 6 * 6, 4096), + nn.ReLU(inplace=True), + nn.Dropout(), + nn.Linear(4096, 4096), + nn.ReLU(inplace=True), + ) + self.fc_yaw = nn.Linear(4096, num_bins) + self.fc_pitch = nn.Linear(4096, num_bins) + self.fc_roll = nn.Linear(4096, num_bins) + + def forward(self, x): + x = self.features(x) + x = x.view(x.size(0), 256 * 6 * 6) + x = self.classifier(x) + yaw = self.fc_yaw(x) + pitch = self.fc_pitch(x) + roll = self.fc_roll(x) + return yaw, pitch, roll -- Gitblit v1.8.0