From b74b9c54247177c82493f180617d7551de8e2bb1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 26 九月 2017 03:47:06 +0800 Subject: [PATCH] Before SR experiments --- code/train.py | 63 ++++++++++++++++++++++--------- 1 files changed, 44 insertions(+), 19 deletions(-) diff --git a/code/train.py b/code/train.py index 6e1ae5b..2f0cce3 100644 --- a/code/train.py +++ b/code/train.py @@ -48,6 +48,7 @@ default=0.001, type=float) parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) args = parser.parse_args() return args @@ -124,8 +125,21 @@ transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, @@ -150,11 +164,16 @@ print 'First phase of training.' for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): + for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) label_yaw = Variable(labels[:,0].cuda(gpu)) label_pitch = Variable(labels[:,1].cuda(gpu)) label_roll = Variable(labels[:,2].cuda(gpu)) + + label_angles = Variable(cont_labels[:,:3].cuda(gpu)) + label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) + label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) + label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) optimizer.zero_grad() model.zero_grad() @@ -171,13 +190,13 @@ pitch_predicted = softmax(pre_pitch) roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) # Total loss loss_yaw += alpha * loss_reg_yaw @@ -204,12 +223,16 @@ print 'Second phase of training (finetuning layer).' for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): + for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) label_yaw = Variable(labels[:,0].cuda(gpu)) label_pitch = Variable(labels[:,1].cuda(gpu)) label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) + + label_angles = Variable(cont_labels[:,:3].cuda(gpu)) + label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) + label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) + label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) optimizer.zero_grad() model.zero_grad() @@ -226,13 +249,13 @@ pitch_predicted = softmax(pre_pitch) roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) # Total loss loss_yaw += alpha * loss_reg_yaw @@ -241,8 +264,10 @@ # Finetuning loss loss_seq = [loss_yaw, loss_pitch, loss_roll] - for idx in xrange(args.iter_ref+1): - loss_angles = reg_criterion(angles[idx], label_angles.float()) + for idx in xrange(1,len(angles)): + label_angles_residuals = label_angles - angles[0] * 3 - 99 + label_angles_residuals = label_angles_residuals.detach() + loss_angles = reg_criterion(angles[idx], label_angles_residuals) loss_seq.append(loss_angles) grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] -- Gitblit v1.8.0