From beb9f36419d0df03c3248757f54af032a633e05c Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期六, 12 八月 2017 11:49:10 +0800 Subject: [PATCH] AFLW training ready. --- code/datasets.py | 62 ++++++++++++++++++++++++++++-- 1 files changed, 57 insertions(+), 5 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 06cd433..f6fcc45 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -7,6 +7,10 @@ import utils +def stack_grayscale_tensor(tensor): + tensor = torch.cat([tensor, tensor, tensor], 0) + return tensor + class Pose_300W_LP(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): self.data_dir = data_dir @@ -66,7 +70,7 @@ return self.length class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -76,12 +80,14 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') # Crop the face pt2d = utils.get_pt2d_from_mat(mat_path) @@ -105,7 +111,12 @@ roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) - labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape + shape = np.load(shape_path) + + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) if self.transform is not None: img = self.transform(img) @@ -117,7 +128,7 @@ return self.length class AFLW2000_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -127,11 +138,12 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face @@ -167,6 +179,46 @@ # 2,000 return self.length +class AFLW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in radians + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] + # And convert to degrees. + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # Check how many + return self.length + def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names -- Gitblit v1.8.0