From beb9f36419d0df03c3248757f54af032a633e05c Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期六, 12 八月 2017 11:49:10 +0800 Subject: [PATCH] AFLW training ready. --- code/test.py | 95 +++++++++++++++++++++++++++++++++++++++-------- 1 files changed, 79 insertions(+), 16 deletions(-) diff --git a/code/test.py b/code/test.py index 401e02b..4b1a655 100644 --- a/code/test.py +++ b/code/test.py @@ -5,6 +5,8 @@ from torch.utils.data import DataLoader from torchvision import transforms import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt @@ -12,7 +14,7 @@ import os import argparse -from datasets import AFLW2000 +import datasets import hopenet import utils @@ -29,6 +31,8 @@ default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) args = parser.parse_args() @@ -38,11 +42,15 @@ args = parse_args() cudnn.enabled = True - batch_size = 1 gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - model = hopenet.Simple_CNN() + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -51,12 +59,13 @@ print 'Loading data.' - transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()]) + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor()]) - pose_dataset = AFLW2000(args.data_dir, args.filename_list, + pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, + batch_size=args.batch_size, num_workers=2) model.cuda(gpu) @@ -65,18 +74,72 @@ # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - error = .0 total = 0 - for i, (images, labels, path) in enumerate(test_loader): + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - labels = Variable(labels).cuda(gpu) - outputs = model(images) - _, predicted = torch.max(outputs.data, 1) total += labels.size(0) - # TODO: There are more efficient ways. - for idx in xrange(len(outputs)): - error += utils.mse_loss(outputs[idx], labels[idx]) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + yaw, pitch, roll = model(images) - print('Test MSE error of the model on the ' + str(total) + - ' test images: %.4f' % (error / total)) + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0