From bf2f0bcfd1a7fbed462f65d44dd8589ab19ba715 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 26 十月 2017 03:19:35 +0800
Subject: [PATCH] Starting opensource

---
 /dev/null       |  192 --------------------------------
 code/hopenet.py |  116 -------------------
 2 files changed, 0 insertions(+), 308 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index 80160d9..cd810e3 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -4,16 +4,6 @@
 import math
 import torch.nn.functional as F
 
-def ycbcr_to_rgb(input):
-  # input is mini-batch N x 3 x H x W of an YCbCr image
-  output = Variable(input.data.new(*input.size()))
-  output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4
-  output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711
-  output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765
-  # output[output <= 0] = 0.
-  # output[output > 1] = 1.
-  return output
-
 # CNN Model (2 conv layer)
 class Simple_CNN(nn.Module):
     def __init__(self):
@@ -234,112 +224,6 @@
         pitch = self.fc_pitch(x)
         roll = self.fc_roll(x)
         return yaw, pitch, roll
-
-class Hopenet_SR(nn.Module):
-    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins, upscale_factor):
-        self.inplanes = 64
-        super(Hopenet, self).__init__()
-        # Super resolution sub-network
-        self.sr_relu = nn.ReLU()
-        self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
-        self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
-        self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
-        self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
-        self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor)
-
-        # Pose estimation sub-network
-        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-                               bias=False)
-        self.bn1 = nn.BatchNorm2d(64)
-        self.relu = nn.ReLU(inplace=True)
-        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-        self.layer1 = self._make_layer(block, 64, layers[0])
-        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
-        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
-        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-        self.avgpool = nn.AvgPool2d(7)
-        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
-
-        self.softmax = nn.Softmax()
-        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
-
-        self.upscale_factor = upscale_factor
-
-        for m in self.modules():
-            if isinstance(m, nn.Conv2d):
-                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
-                m.weight.data.normal_(0, math.sqrt(2. / n))
-            elif isinstance(m, nn.BatchNorm2d):
-                m.weight.data.fill_(1)
-                m.bias.data.zero_()
-
-    def _make_layer(self, block, planes, blocks, stride=1):
-        downsample = None
-        if stride != 1 or self.inplanes != planes * block.expansion:
-            downsample = nn.Sequential(
-                nn.Conv2d(self.inplanes, planes * block.expansion,
-                          kernel_size=1, stride=stride, bias=False),
-                nn.BatchNorm2d(planes * block.expansion),
-            )
-
-        layers = []
-        layers.append(block(self.inplanes, planes, stride, downsample))
-        self.inplanes = planes * block.expansion
-        for i in range(1, blocks):
-            layers.append(block(self.inplanes, planes))
-
-        return nn.Sequential(*layers)
-
-    def forward(self, x):
-        # Super-resolution sub-network
-        y_channel = x[:,0,:,:]
-
-        sr_y = self.sr_relu(self.sr_conv1(y_channel))
-        sr_y = self.sr_relu(self.sr_conv2(sr_y))
-        sr_y = self.sr_relu(self.sr_conv3(sr_y))
-        sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y))
-
-        x[:,0,:,:] = sr_y
-        x_rgb = ycbcr_to_rgb(x)
-
-        out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
-        out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
-        out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
-
-        # Pose estimation sub-network
-        x = self.conv1(sr_output)
-        x = self.bn1(x)
-        x = self.relu(x)
-        x = self.maxpool(x)
-
-        x = self.layer1(x)
-        x = self.layer2(x)
-        x = self.layer3(x)
-        x = self.layer4(x)
-
-        x = self.avgpool(x)
-        x = x.view(x.size(0), -1)
-        pre_yaw = self.fc_yaw(x)
-        pre_pitch = self.fc_pitch(x)
-        pre_roll = self.fc_roll(x)
-
-        yaw = self.softmax(pre_yaw)
-        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
-        pitch = self.softmax(pre_pitch)
-        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
-        roll = self.softmax(pre_roll)
-        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
-        yaw = yaw.view(yaw.size(0), 1)
-        pitch = pitch.view(pitch.size(0), 1)
-        roll = roll.view(roll.size(0), 1)
-        angles = []
-        preangles = torch.cat([yaw, pitch, roll], 1)
-        angles.append(preangles)
-
-        return pre_yaw, pre_pitch, pre_roll, angles, sr_y
 
 class Hopenet_new(nn.Module):
     # This is just Hopenet with 3 output layers for yaw, pitch and roll.
diff --git a/code/loss.py b/code/loss.py
deleted file mode 100644
index 805731b..0000000
--- a/code/loss.py
+++ /dev/null
@@ -1,37 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.autograd import Variable
-
-
-def one_hot(index, classes):
-    size = index.size() + (classes,)
-    view = index.size() + (1,)
-
-    mask = torch.Tensor(*size).fill_(0)
-    index = index.view(*view)
-    ones = 1.
-
-    if isinstance(index, Variable):
-        ones = Variable(torch.Tensor(index.size()).fill_(1))
-        mask = Variable(mask, volatile=index.volatile)
-
-    return mask.scatter_(1, index, ones)
-
-
-class FocalLoss(nn.Module):
-
-    def __init__(self, gamma=0, eps=1e-7):
-        super(FocalLoss, self).__init__()
-        self.gamma = gamma
-        self.eps = eps
-
-    def forward(self, input, target):
-        y = one_hot(target, input.size(-1))
-        logit = F.softmax(input)
-        logit = logit.clamp(self.eps, 1. - self.eps)
-
-        loss = -1 * y * torch.log(logit) # cross entropy
-        loss = loss * (1 - logit) ** self.gamma # focal loss
-
-        return loss.sum()
diff --git a/code/old/test_old.py b/code/old/test_old.py
deleted file mode 100644
index e831e22..0000000
--- a/code/old/test_old.py
+++ /dev/null
@@ -1,149 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torch.backends.cudnn as cudnn
-import torchvision
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import utils
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
-          default='', type=str)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=1, type=int)
-    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
-          default=False, type=bool)
-
-    args = parser.parse_args()
-
-    return args
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
-
-    # ResNet101 with 3 outputs.
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-
-    print 'Loading snapshot.'
-    # Load snapshot
-    saved_state_dict = torch.load(snapshot_path)
-    model.load_state_dict(saved_state_dict)
-
-    print 'Loading data.'
-
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
-
-    transformations = transforms.Compose([transforms.Scale(224),
-    transforms.CenterCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
-    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=args.batch_size,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-
-    print 'Ready to test network.'
-
-    # Test the Model
-    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    total = 0
-    n_margins = 20
-    yaw_correct = np.zeros(n_margins)
-    pitch_correct = np.zeros(n_margins)
-    roll_correct = np.zeros(n_margins)
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
-
-    yaw_error = .0
-    pitch_error = .0
-    roll_error = .0
-
-    l1loss = torch.nn.L1Loss(size_average=False)
-
-    for i, (images, labels, name) in enumerate(test_loader):
-        images = Variable(images).cuda(gpu)
-        total += labels.size(0)
-        label_yaw = labels[:,0].float()
-        label_pitch = labels[:,1].float()
-        label_roll = labels[:,2].float()
-
-        yaw, pitch, roll = model(images)
-
-        # Binned predictions
-        _, yaw_bpred = torch.max(yaw.data, 1)
-        _, pitch_bpred = torch.max(pitch.data, 1)
-        _, roll_bpred = torch.max(roll.data, 1)
-
-        # Continuous predictions
-        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
-        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
-        roll_predicted = utils.softmax_temperature(roll.data, 1)
-
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
-
-        # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
-
-        # Save images with pose cube.
-        # TODO: fix for larger batch size
-        if args.save_viz:
-            name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
-            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
-
-    print('Test error in degrees of the model on the ' + str(total) +
-    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
-    pitch_error / total, roll_error / total))
-
-    # Binned accuracy
-    # for idx in xrange(len(yaw_correct)):
-    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/old/test_shape.py b/code/old/test_shape.py
deleted file mode 100644
index a89e5ec..0000000
--- a/code/old/test_shape.py
+++ /dev/null
@@ -1,145 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torch.backends.cudnn as cudnn
-import torchvision
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import utils
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
-          default='', type=str)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=1, type=int)
-    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
-          default=False, type=bool)
-
-    args = parser.parse_args()
-
-    return args
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
-
-    # ResNet101 with 3 outputs.
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-
-    print 'Loading snapshot.'
-    # Load snapshot
-    saved_state_dict = torch.load(snapshot_path)
-    model.load_state_dict(saved_state_dict)
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(224),
-    transforms.CenterCrop(224), transforms.ToTensor()])
-
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
-    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=args.batch_size,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-
-    print 'Ready to test network.'
-
-    # Test the Model
-    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    total = 0
-    n_margins = 20
-    yaw_correct = np.zeros(n_margins)
-    pitch_correct = np.zeros(n_margins)
-    roll_correct = np.zeros(n_margins)
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
-
-    yaw_error = .0
-    pitch_error = .0
-    roll_error = .0
-
-    l1loss = torch.nn.L1Loss(size_average=False)
-
-    for i, (images, labels, name) in enumerate(test_loader):
-        images = Variable(images).cuda(gpu)
-        total += labels.size(0)
-        label_yaw = labels[:,0].float()
-        label_pitch = labels[:,1].float()
-        label_roll = labels[:,2].float()
-
-        yaw, pitch, roll, shape = model(images)
-
-        # Binned predictions
-        _, yaw_bpred = torch.max(yaw.data, 1)
-        _, pitch_bpred = torch.max(pitch.data, 1)
-        _, roll_bpred = torch.max(roll.data, 1)
-
-        # Continuous predictions
-        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
-        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
-        roll_predicted = utils.softmax_temperature(roll.data, 1)
-
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
-
-        # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
-
-        # Save images with pose cube.
-        # TODO: fix for larger batch size
-        if args.save_viz:
-            name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
-            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
-
-    print('Test error in degrees of the model on the ' + str(total) +
-    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
-    pitch_error / total, roll_error / total))
-
-    # Binned accuracy
-    # for idx in xrange(len(yaw_correct)):
-    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/old/train_preangles_ft.py b/code/old/train_preangles_ft.py
deleted file mode 100644
index 1a31e7a..0000000
--- a/code/old/train_preangles_ft.py
+++ /dev/null
@@ -1,219 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=0.001, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
-    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
-          default=0.001, type=float)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str)
-    args = parser.parse_args()
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.fc_finetune)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_fc_params(model):
-    b = []
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            for name, param in module.named_parameters():
-                yield param
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs = args.num_epochs
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    if args.snapshot != '':
-        load_filtered_state_dict(model, torch.load(args.snapshot))
-    else:
-        load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(240),
-    transforms.RandomCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-
-    if args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW_aug':
-        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
-    # Regression loss coefficient
-    alpha = args.alpha
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
-
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
-                                   lr = args.lr)
-
-    print 'Ready to train network.'
-
-    print 'First phase of training.'
-    for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
-                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
diff --git a/code/old/train_preangles_ft_sgd.py b/code/old/train_preangles_ft_sgd.py
deleted file mode 100644
index 8b0c4d1..0000000
--- a/code/old/train_preangles_ft_sgd.py
+++ /dev/null
@@ -1,219 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=0.001, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
-    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
-          default=0.001, type=float)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str)
-    args = parser.parse_args()
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.fc_finetune)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_fc_params(model):
-    b = []
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            for name, param in module.named_parameters():
-                yield param
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs = args.num_epochs
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    if args.snapshot != '':
-        load_filtered_state_dict(model, torch.load(args.snapshot))
-    else:
-        load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(240),
-    transforms.RandomCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-
-    if args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW_aug':
-        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
-    # Regression loss coefficient
-    alpha = args.alpha
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
-
-    optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': 0},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
-                                   lr = args.lr, momentum=0.9)
-
-    print 'Ready to train network.'
-
-    print 'First phase of training.'
-    for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
-                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
diff --git a/code/old/train_preangles_rmsprop.py b/code/old/train_preangles_rmsprop.py
deleted file mode 100644
index c866a5f..0000000
--- a/code/old/train_preangles_rmsprop.py
+++ /dev/null
@@ -1,281 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=0.001, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
-    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
-          default=0.001, type=float)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
-
-    args = parser.parse_args()
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.fc_finetune)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_fc_params(model):
-    b = []
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            for name, param in module.named_parameters():
-                yield param
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs = args.num_epochs
-    num_epochs_ft = args.num_epochs_ft
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(240),
-    transforms.RandomCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-
-    if args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW_aug':
-        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
-    # Regression loss coefficient
-    alpha = args.alpha
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
-
-    optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': 0},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 10}],
-                                   lr = args.lr)
-
-    print 'Ready to train network.'
-
-    print 'First phase of training.'
-    for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
-                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
-
-    print 'Second phase of training (finetuning layer).'
-    for epoch in range(num_epochs_ft):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-            label_angles = Variable(labels[:,:3].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
-                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')
diff --git a/code/old/train_shape.py b/code/old/train_shape.py
deleted file mode 100644
index fcebadb..0000000
--- a/code/old/train_shape.py
+++ /dev/null
@@ -1,204 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=1e-5, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-
-    args = parser.parse_args()
-
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                yield k
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    b.append(model.fc_shape_0)
-    b.append(model.fc_shape_1)
-    b.append(model.fc_shape_2)
-    b.append(model.fc_shape_3)
-    b.append(model.fc_shape_4)
-    b.append(model.fc_shape_5)
-    b.append(model.fc_shape_6)
-    b.append(model.fc_shape_7)
-    b.append(model.fc_shape_8)
-    b.append(model.fc_shape_9)
-
-    for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                    yield k
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs = args.num_epochs
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
-                                          transforms.ToTensor()])
-
-    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
-                                transformations)
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    criterion = nn.CrossEntropyLoss().cuda(gpu)
-    reg_criterion = nn.MSELoss().cuda(gpu)
-    # Regression loss coefficient
-    alpha = 0.1
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
-
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
-                                  lr = args.lr)
-
-    print 'Ready to train network.'
-
-    for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-            label_shape = Variable(labels[:,3:].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            yaw, pitch, roll, shape = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(yaw, label_yaw)
-            loss_pitch = criterion(pitch, label_pitch)
-            loss_roll = criterion(roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = F.softmax(yaw)
-            pitch_predicted = F.softmax(pitch)
-            roll_predicted = F.softmax(roll)
-
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll]
-
-            # Shape space loss
-            for idx in xrange(len(shape)):
-                loss_seq.append(criterion(shape[idx], label_shape[:,idx]))
-
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
-            #        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f'
-                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0]))
-                if epoch == 0:
-                    torch.save(model.state_dict(),
-                    'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs - 1:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl')
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl')
diff --git a/code/test_preangles_superres.py b/code/test_preangles_superres.py
deleted file mode 100644
index 13f2451..0000000
--- a/code/test_preangles_superres.py
+++ /dev/null
@@ -1,181 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torch.backends.cudnn as cudnn
-import torchvision
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import utils
-
-from PIL import Image
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
-          default='', type=str)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=1, type=int)
-    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
-          default=False, type=bool)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
-
-    args = parser.parse_args()
-
-    return args
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    gpu = args.gpu_id
-    snapshot_path = args.snapshot
-
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
-
-    print 'Loading snapshot.'
-    # Load snapshot
-    saved_state_dict = torch.load(snapshot_path)
-    model.load_state_dict(saved_state_dict)
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(224),
-    transforms.CenterCrop(224), transforms.ToTensor()])
-
-    if args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
-                                transformations)
-    elif args.dataset == 'AFLW2000_ds':
-        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
-                                transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=args.batch_size,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-
-    print 'Ready to test network.'
-
-    # Super-resolution model
-    sr_model = torch.load('data/sr_model/model_epoch_50.pth')["model"]
-    sr_model = sr_model.cuda(gpu)
-
-    # Test the Model
-    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    total = 0
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
-
-    yaw_error = .0
-    pitch_error = .0
-    roll_error = .0
-
-    l1loss = torch.nn.L1Loss(size_average=False)
-
-    for i, (images, labels, cont_labels, name) in enumerate(test_loader):
-
-        ### START Super-resolution ###
-        # To new color space
-        img = transforms.ToPILImage()(images[0])
-        # print img
-        img = img.convert('YCbCr')
-        img_y, img_cb, img_cr = img.split()
-
-        # Super-resolution
-        img_y_var = Variable(transforms.ToTensor()(img_y)).view(1, -1, img_y.size[0], img_y.size[1]).cuda(gpu)
-        out_sr = sr_model(img_y_var)
-
-        img_h_y = out_sr.data[0].cpu().numpy().astype(np.float32)
-
-        img_h_y = img_h_y * 255
-        img_h_y[img_h_y<0] = 0
-        img_h_y[img_h_y>255.] = 255.
-        img_h_y = img_h_y[0]
-
-        img_new = np.zeros((img_h_y.shape[0], img_h_y.shape[1], 3), np.uint8)
-        img_new[:,:,0] = img_h_y
-        img_new[:,:,1] = np.asarray(img_cb)
-        img_new[:,:,2] = np.asarray(img_cr)
-        img_new = Image.fromarray(img_new, "YCbCr").convert("RGB")
-
-        # To tensor and normalize
-        img_new.save('output/test_superres/' + name[0] + '.jpg', "JPEG")
-        img = transforms.ToTensor()(img_new)
-        img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
-        images = Variable(img.view(1,-1,img.shape[1],img.shape[2])).cuda(gpu)
-
-        ### END Super-resolution ###
-
-        total += cont_labels.size(0)
-        label_yaw = cont_labels[:,0].float()
-        label_pitch = cont_labels[:,1].float()
-        label_roll = cont_labels[:,2].float()
-
-        yaw, pitch, roll, angles = model(images)
-
-        # Binned predictions
-        _, yaw_bpred = torch.max(yaw.data, 1)
-        _, pitch_bpred = torch.max(pitch.data, 1)
-        _, roll_bpred = torch.max(roll.data, 1)
-
-        # Continuous predictions
-        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
-        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
-        roll_predicted = utils.softmax_temperature(roll.data, 1)
-
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99
-
-        # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw))
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
-
-        # Save images with pose cube.
-        # TODO: fix for larger batch size
-        if args.save_viz:
-            name = name[0]
-            if args.dataset == 'BIWI':
-                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
-            else:
-                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            if args.batch_size == 1:
-                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
-                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
-            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
-
-    print('Test error in degrees of the model on the ' + str(total) +
-    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
-    pitch_error / total, roll_error / total))
diff --git a/code/train_finetune.py b/code/train_finetune.py
deleted file mode 100644
index 10eb6ad..0000000
--- a/code/train_finetune.py
+++ /dev/null
@@ -1,203 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=0.001, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
-    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
-          default=0.001, type=float)
-    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
-          default=1, type=int)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str)
-    args = parser.parse_args()
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_fc_params(model):
-    b = []
-    b.append(model.fc_finetune)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            for name, param in module.named_parameters():
-                yield param
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs_ft = args.num_epochs_ft
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-    # ResNet101 with 3 outputs
-    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
-    # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
-    # ResNet18
-    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
-    if args.snapshot != '':
-        load_filtered_state_dict(model, torch.load(args.snapshot))
-    else:
-        load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(240),
-    transforms.RandomCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-    if args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW_aug':
-        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
-    smooth_l1_loss = nn.SmoothL1Loss().cuda()
-    # Regression loss coefficient
-    alpha = args.alpha
-
-    idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
-
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
-                                  {'params': get_non_ignored_params(model), 'lr': 0},
-                                  {'params': get_fc_params(model), 'lr': args.lr}],
-                                   lr = args.lr)
-
-    print 'Ready to train network.'
-
-    print 'Second phase of training (finetuning layer).'
-    for epoch in range(num_epochs_ft):
-        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-
-            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Finetuning loss
-            loss_seq = []
-            for idx in xrange(1,len(angles)):
-                label_angles_residuals = label_angles - (angles[0] * 3 - 99)
-                # for idy in xrange(1,idx):
-                #     label_angles_residuals += angles[idy] * 3 - 99
-                label_angles_residuals = label_angles_residuals.detach()
-                # Reconvert to other unit
-                label_angles_residuals = label_angles_residuals / 3.0 + 33
-                loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals)
-                loss_seq.append(loss_angles)
-
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: finetuning %.4f'
-                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_angles.data[0]))
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
diff --git a/code/train_finetune_new.py b/code/train_finetune_new.py
deleted file mode 100644
index 1f77d54..0000000
--- a/code/train_finetune_new.py
+++ /dev/null
@@ -1,192 +0,0 @@
-import numpy as np
-import torch
-import torch.nn as nn
-from torch.autograd import Variable
-from torch.utils.data import DataLoader
-from torchvision import transforms
-import torchvision
-import torch.backends.cudnn as cudnn
-import torch.nn.functional as F
-
-import cv2
-import matplotlib.pyplot as plt
-import sys
-import os
-import argparse
-
-import datasets
-import hopenet
-import torch.utils.model_zoo as model_zoo
-
-model_urls = {
-    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
-    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
-    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
-    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
-    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
-}
-
-def parse_args():
-    """Parse input arguments."""
-    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
-    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
-            default=0, type=int)
-    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
-          default=5, type=int)
-    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
-          default=16, type=int)
-    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
-          default=0.001, type=float)
-    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
-          default='', type=str)
-    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
-          default='', type=str)
-    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
-    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
-          default=0.001, type=float)
-    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
-          default=1, type=int)
-    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str)
-    args = parser.parse_args()
-    return args
-
-def get_ignored_params(model):
-    # Generator function that yields ignored params.
-    b = []
-    b.append(model.conv1)
-    b.append(model.bn1)
-    b.append(model.layer1)
-    b.append(model.layer2)
-    b.append(model.layer3)
-    b.append(model.layer4)
-    b.append(model.fc_yaw)
-    b.append(model.fc_pitch)
-    b.append(model.fc_roll)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
-    b = []
-    b.append(model.conv1x1)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            if 'bn' in module_name:
-                module.eval()
-            for name, param in module.named_parameters():
-                yield param
-
-def get_fc_params(model):
-    b = []
-    b.append(model.fc_finetune_new)
-    for i in range(len(b)):
-        for module_name, module in b[i].named_modules():
-            for name, param in module.named_parameters():
-                yield param
-
-def load_filtered_state_dict(model, snapshot):
-    # By user apaszke from discuss.pytorch.org
-    model_dict = model.state_dict()
-    # 1. filter out unnecessary keys
-    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
-    # 2. overwrite entries in the existing state dict
-    model_dict.update(snapshot)
-    # 3. load the new state dict
-    model.load_state_dict(model_dict)
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    cudnn.enabled = True
-    num_epochs_ft = args.num_epochs_ft
-    batch_size = args.batch_size
-    gpu = args.gpu_id
-
-    if not os.path.exists('output/snapshots'):
-        os.makedirs('output/snapshots')
-
-
-    model = hopenet.Hopenet_new(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
-
-    if args.snapshot != '':
-        load_filtered_state_dict(model, torch.load(args.snapshot))
-    else:
-        load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
-
-    print 'Loading data.'
-
-    transformations = transforms.Compose([transforms.Scale(240),
-    transforms.RandomCrop(224), transforms.ToTensor(),
-    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
-
-    if args.dataset == 'Pose_300W_LP':
-        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW2000':
-        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'BIWI':
-        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW':
-        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFLW_aug':
-        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
-    elif args.dataset == 'AFW':
-        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
-    else:
-        print 'Error: not a valid dataset name'
-        sys.exit()
-    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
-                                               shuffle=True,
-                                               num_workers=2)
-
-    model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
-    smooth_l1_loss = nn.SmoothL1Loss().cuda()
-    # Regression loss coefficient
-    alpha = args.alpha
-
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr}],
-                                   lr = args.lr)
-
-    print 'Ready to train network.'
-
-    print 'Second phase of training (finetuning layer).'
-    for epoch in range(num_epochs_ft):
-        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-
-            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, preangles, final_angles = model(images)
-
-            # Finetuning loss
-            loss_seq = []
-
-            loss_angles = smooth_l1_loss(final_angles, label_angles)
-            loss_seq.append(loss_angles)
-
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: finetuning %.4f'
-                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_angles.data[0]))
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')

--
Gitblit v1.8.0