From bf2f0bcfd1a7fbed462f65d44dd8589ab19ba715 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 26 十月 2017 03:19:35 +0800 Subject: [PATCH] Starting opensource --- /dev/null | 192 -------------------------------- code/hopenet.py | 116 ------------------- 2 files changed, 0 insertions(+), 308 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 80160d9..cd810e3 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,16 +4,6 @@ import math import torch.nn.functional as F -def ycbcr_to_rgb(input): - # input is mini-batch N x 3 x H x W of an YCbCr image - output = Variable(input.data.new(*input.size())) - output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4 - output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711 - output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765 - # output[output <= 0] = 0. - # output[output > 1] = 1. - return output - # CNN Model (2 conv layer) class Simple_CNN(nn.Module): def __init__(self): @@ -234,112 +224,6 @@ pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll - -class Hopenet_SR(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, upscale_factor): - self.inplanes = 64 - super(Hopenet, self).__init__() - # Super resolution sub-network - self.sr_relu = nn.ReLU() - self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) - self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) - self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) - self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) - self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor) - - # Pose estimation sub-network - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - - self.softmax = nn.Softmax() - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.upscale_factor = upscale_factor - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, - kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - # Super-resolution sub-network - y_channel = x[:,0,:,:] - - sr_y = self.sr_relu(self.sr_conv1(y_channel)) - sr_y = self.sr_relu(self.sr_conv2(sr_y)) - sr_y = self.sr_relu(self.sr_conv3(sr_y)) - sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y)) - - x[:,0,:,:] = sr_y - x_rgb = ycbcr_to_rgb(x) - - out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) - out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) - out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') - - # Pose estimation sub-network - x = self.conv1(sr_output) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - - x = self.avgpool(x) - x = x.view(x.size(0), -1) - pre_yaw = self.fc_yaw(x) - pre_pitch = self.fc_pitch(x) - pre_roll = self.fc_roll(x) - - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - angles = [] - preangles = torch.cat([yaw, pitch, roll], 1) - angles.append(preangles) - - return pre_yaw, pre_pitch, pre_roll, angles, sr_y class Hopenet_new(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. diff --git a/code/loss.py b/code/loss.py deleted file mode 100644 index 805731b..0000000 --- a/code/loss.py +++ /dev/null @@ -1,37 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.autograd import Variable - - -def one_hot(index, classes): - size = index.size() + (classes,) - view = index.size() + (1,) - - mask = torch.Tensor(*size).fill_(0) - index = index.view(*view) - ones = 1. - - if isinstance(index, Variable): - ones = Variable(torch.Tensor(index.size()).fill_(1)) - mask = Variable(mask, volatile=index.volatile) - - return mask.scatter_(1, index, ones) - - -class FocalLoss(nn.Module): - - def __init__(self, gamma=0, eps=1e-7): - super(FocalLoss, self).__init__() - self.gamma = gamma - self.eps = eps - - def forward(self, input, target): - y = one_hot(target, input.size(-1)) - logit = F.softmax(input) - logit = logit.clamp(self.eps, 1. - self.eps) - - loss = -1 * y * torch.log(logit) # cross entropy - loss = loss * (1 - logit) ** self.gamma # focal loss - - return loss.sum() diff --git a/code/old/test_old.py b/code/old/test_old.py deleted file mode 100644 index e831e22..0000000 --- a/code/old/test_old.py +++ /dev/null @@ -1,149 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(224), - transforms.CenterCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/old/test_shape.py b/code/old/test_shape.py deleted file mode 100644 index a89e5ec..0000000 --- a/code/old/test_shape.py +++ /dev/null @@ -1,145 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.CenterCrop(224), transforms.ToTensor()]) - - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() - - yaw, pitch, roll, shape = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/old/train_preangles_ft.py b/code/old/train_preangles_ft.py deleted file mode 100644 index 1a31e7a..0000000 --- a/code/old/train_preangles_ft.py +++ /dev/null @@ -1,219 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - if args.snapshot != '': - load_filtered_state_dict(model, torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 2}], - lr = args.lr) - - print 'Ready to train network.' - - print 'First phase of training.' - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # print yaw_predicted, label_yaw.float(), loss_reg_yaw - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') diff --git a/code/old/train_preangles_ft_sgd.py b/code/old/train_preangles_ft_sgd.py deleted file mode 100644 index 8b0c4d1..0000000 --- a/code/old/train_preangles_ft_sgd.py +++ /dev/null @@ -1,219 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - if args.snapshot != '': - load_filtered_state_dict(model, torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 2}], - lr = args.lr, momentum=0.9) - - print 'Ready to train network.' - - print 'First phase of training.' - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # print yaw_predicted, label_yaw.float(), loss_reg_yaw - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') diff --git a/code/old/train_preangles_rmsprop.py b/code/old/train_preangles_rmsprop.py deleted file mode 100644 index c866a5f..0000000 --- a/code/old/train_preangles_rmsprop.py +++ /dev/null @@ -1,281 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - num_epochs_ft = args.num_epochs_ft - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 10}], - lr = args.lr) - - print 'Ready to train network.' - - print 'First phase of training.' - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # print yaw_predicted, label_yaw.float(), loss_reg_yaw - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) - - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') diff --git a/code/old/train_shape.py b/code/old/train_shape.py deleted file mode 100644 index fcebadb..0000000 --- a/code/old/train_shape.py +++ /dev/null @@ -1,204 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=1e-5, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - - args = parser.parse_args() - - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - b.append(model.fc_shape_0) - b.append(model.fc_shape_1) - b.append(model.fc_shape_2) - b.append(model.fc_shape_3) - b.append(model.fc_shape_4) - b.append(model.fc_shape_5) - b.append(model.fc_shape_6) - b.append(model.fc_shape_7) - b.append(model.fc_shape_8) - b.append(model.fc_shape_9) - - for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), - transforms.ToTensor()]) - - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - criterion = nn.CrossEntropyLoss().cuda(gpu) - reg_criterion = nn.MSELoss().cuda(gpu) - # Regression loss coefficient - alpha = 0.1 - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) - - print 'Ready to train network.' - - for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - label_shape = Variable(labels[:,3:].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - yaw, pitch, roll, shape = model(images) - - # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) - - # MSE loss - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - loss_seq = [loss_yaw, loss_pitch, loss_roll] - - # Shape space loss - for idx in xrange(len(shape)): - loss_seq.append(criterion(shape[idx], label_shape[:,idx])) - - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0])) - if epoch == 0: - torch.save(model.state_dict(), - 'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs - 1: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl') - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/test_preangles_superres.py b/code/test_preangles_superres.py deleted file mode 100644 index 13f2451..0000000 --- a/code/test_preangles_superres.py +++ /dev/null @@ -1,181 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -from PIL import Image - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = args.snapshot - - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.CenterCrop(224), transforms.ToTensor()]) - - if args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) - elif args.dataset == 'AFLW2000_ds': - pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, - transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Super-resolution model - sr_model = torch.load('data/sr_model/model_epoch_50.pth')["model"] - sr_model = sr_model.cuda(gpu) - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - for i, (images, labels, cont_labels, name) in enumerate(test_loader): - - ### START Super-resolution ### - # To new color space - img = transforms.ToPILImage()(images[0]) - # print img - img = img.convert('YCbCr') - img_y, img_cb, img_cr = img.split() - - # Super-resolution - img_y_var = Variable(transforms.ToTensor()(img_y)).view(1, -1, img_y.size[0], img_y.size[1]).cuda(gpu) - out_sr = sr_model(img_y_var) - - img_h_y = out_sr.data[0].cpu().numpy().astype(np.float32) - - img_h_y = img_h_y * 255 - img_h_y[img_h_y<0] = 0 - img_h_y[img_h_y>255.] = 255. - img_h_y = img_h_y[0] - - img_new = np.zeros((img_h_y.shape[0], img_h_y.shape[1], 3), np.uint8) - img_new[:,:,0] = img_h_y - img_new[:,:,1] = np.asarray(img_cb) - img_new[:,:,2] = np.asarray(img_cr) - img_new = Image.fromarray(img_new, "YCbCr").convert("RGB") - - # To tensor and normalize - img_new.save('output/test_superres/' + name[0] + '.jpg', "JPEG") - img = transforms.ToTensor()(img_new) - img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img) - images = Variable(img.view(1,-1,img.shape[1],img.shape[2])).cuda(gpu) - - ### END Super-resolution ### - - total += cont_labels.size(0) - label_yaw = cont_labels[:,0].float() - label_pitch = cont_labels[:,1].float() - label_roll = cont_labels[:,2].float() - - yaw, pitch, roll, angles = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 - - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - if args.dataset == 'BIWI': - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) - else: - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - if args.batch_size == 1: - error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) - cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) - utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) diff --git a/code/train_finetune.py b/code/train_finetune.py deleted file mode 100644 index 10eb6ad..0000000 --- a/code/train_finetune.py +++ /dev/null @@ -1,203 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', - default=1, type=int) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_finetune) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs_ft = args.num_epochs_ft - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - if args.snapshot != '': - load_filtered_state_dict(model, torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - smooth_l1_loss = nn.SmoothL1Loss().cuda() - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': 0}, - {'params': get_fc_params(model), 'lr': args.lr}], - lr = args.lr) - - print 'Ready to train network.' - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, cont_labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - - label_angles = Variable(cont_labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - - # Finetuning loss - loss_seq = [] - for idx in xrange(1,len(angles)): - label_angles_residuals = label_angles - (angles[0] * 3 - 99) - # for idy in xrange(1,idx): - # label_angles_residuals += angles[idy] * 3 - 99 - label_angles_residuals = label_angles_residuals.detach() - # Reconvert to other unit - label_angles_residuals = label_angles_residuals / 3.0 + 33 - loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals) - loss_seq.append(loss_angles) - - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_angles.data[0])) - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') diff --git a/code/train_finetune_new.py b/code/train_finetune_new.py deleted file mode 100644 index 1f77d54..0000000 --- a/code/train_finetune_new.py +++ /dev/null @@ -1,192 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', - default=1, type=int) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.conv1x1) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_finetune_new) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs_ft = args.num_epochs_ft - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - - model = hopenet.Hopenet_new(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - - if args.snapshot != '': - load_filtered_state_dict(model, torch.load(args.snapshot)) - else: - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - smooth_l1_loss = nn.SmoothL1Loss().cuda() - # Regression loss coefficient - alpha = args.alpha - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr}], - lr = args.lr) - - print 'Ready to train network.' - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, cont_labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - - label_angles = Variable(cont_labels[:,:3].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, preangles, final_angles = model(images) - - # Finetuning loss - loss_seq = [] - - loss_angles = smooth_l1_loss(final_angles, label_angles) - loss_seq.append(loss_angles) - - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_angles.data[0])) - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') -- Gitblit v1.8.0