From bf2f0bcfd1a7fbed462f65d44dd8589ab19ba715 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 26 十月 2017 03:19:35 +0800 Subject: [PATCH] Starting opensource --- code/hopenet.py | 116 ---------------------------------------------------------- 1 files changed, 0 insertions(+), 116 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 80160d9..cd810e3 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,16 +4,6 @@ import math import torch.nn.functional as F -def ycbcr_to_rgb(input): - # input is mini-batch N x 3 x H x W of an YCbCr image - output = Variable(input.data.new(*input.size())) - output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4 - output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711 - output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765 - # output[output <= 0] = 0. - # output[output > 1] = 1. - return output - # CNN Model (2 conv layer) class Simple_CNN(nn.Module): def __init__(self): @@ -234,112 +224,6 @@ pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll - -class Hopenet_SR(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, upscale_factor): - self.inplanes = 64 - super(Hopenet, self).__init__() - # Super resolution sub-network - self.sr_relu = nn.ReLU() - self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) - self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) - self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) - self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) - self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor) - - # Pose estimation sub-network - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - - self.softmax = nn.Softmax() - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.upscale_factor = upscale_factor - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, - kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - # Super-resolution sub-network - y_channel = x[:,0,:,:] - - sr_y = self.sr_relu(self.sr_conv1(y_channel)) - sr_y = self.sr_relu(self.sr_conv2(sr_y)) - sr_y = self.sr_relu(self.sr_conv3(sr_y)) - sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y)) - - x[:,0,:,:] = sr_y - x_rgb = ycbcr_to_rgb(x) - - out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) - out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) - out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') - - # Pose estimation sub-network - x = self.conv1(sr_output) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - - x = self.avgpool(x) - x = x.view(x.size(0), -1) - pre_yaw = self.fc_yaw(x) - pre_pitch = self.fc_pitch(x) - pre_roll = self.fc_roll(x) - - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - angles = [] - preangles = torch.cat([yaw, pitch, roll], 1) - angles.append(preangles) - - return pre_yaw, pre_pitch, pre_roll, angles, sr_y class Hopenet_new(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. -- Gitblit v1.8.0