From bf2f0bcfd1a7fbed462f65d44dd8589ab19ba715 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 26 十月 2017 03:19:35 +0800
Subject: [PATCH] Starting opensource

---
 code/hopenet.py |  116 ----------------------------------------------------------
 1 files changed, 0 insertions(+), 116 deletions(-)

diff --git a/code/hopenet.py b/code/hopenet.py
index 80160d9..cd810e3 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -4,16 +4,6 @@
 import math
 import torch.nn.functional as F
 
-def ycbcr_to_rgb(input):
-  # input is mini-batch N x 3 x H x W of an YCbCr image
-  output = Variable(input.data.new(*input.size()))
-  output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4
-  output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711
-  output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765
-  # output[output <= 0] = 0.
-  # output[output > 1] = 1.
-  return output
-
 # CNN Model (2 conv layer)
 class Simple_CNN(nn.Module):
     def __init__(self):
@@ -234,112 +224,6 @@
         pitch = self.fc_pitch(x)
         roll = self.fc_roll(x)
         return yaw, pitch, roll
-
-class Hopenet_SR(nn.Module):
-    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins, upscale_factor):
-        self.inplanes = 64
-        super(Hopenet, self).__init__()
-        # Super resolution sub-network
-        self.sr_relu = nn.ReLU()
-        self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
-        self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
-        self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
-        self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
-        self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor)
-
-        # Pose estimation sub-network
-        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-                               bias=False)
-        self.bn1 = nn.BatchNorm2d(64)
-        self.relu = nn.ReLU(inplace=True)
-        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-        self.layer1 = self._make_layer(block, 64, layers[0])
-        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
-        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
-        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-        self.avgpool = nn.AvgPool2d(7)
-        self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
-        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
-
-        self.softmax = nn.Softmax()
-        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
-
-        self.upscale_factor = upscale_factor
-
-        for m in self.modules():
-            if isinstance(m, nn.Conv2d):
-                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
-                m.weight.data.normal_(0, math.sqrt(2. / n))
-            elif isinstance(m, nn.BatchNorm2d):
-                m.weight.data.fill_(1)
-                m.bias.data.zero_()
-
-    def _make_layer(self, block, planes, blocks, stride=1):
-        downsample = None
-        if stride != 1 or self.inplanes != planes * block.expansion:
-            downsample = nn.Sequential(
-                nn.Conv2d(self.inplanes, planes * block.expansion,
-                          kernel_size=1, stride=stride, bias=False),
-                nn.BatchNorm2d(planes * block.expansion),
-            )
-
-        layers = []
-        layers.append(block(self.inplanes, planes, stride, downsample))
-        self.inplanes = planes * block.expansion
-        for i in range(1, blocks):
-            layers.append(block(self.inplanes, planes))
-
-        return nn.Sequential(*layers)
-
-    def forward(self, x):
-        # Super-resolution sub-network
-        y_channel = x[:,0,:,:]
-
-        sr_y = self.sr_relu(self.sr_conv1(y_channel))
-        sr_y = self.sr_relu(self.sr_conv2(sr_y))
-        sr_y = self.sr_relu(self.sr_conv3(sr_y))
-        sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y))
-
-        x[:,0,:,:] = sr_y
-        x_rgb = ycbcr_to_rgb(x)
-
-        out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
-        out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
-        out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
-
-        # Pose estimation sub-network
-        x = self.conv1(sr_output)
-        x = self.bn1(x)
-        x = self.relu(x)
-        x = self.maxpool(x)
-
-        x = self.layer1(x)
-        x = self.layer2(x)
-        x = self.layer3(x)
-        x = self.layer4(x)
-
-        x = self.avgpool(x)
-        x = x.view(x.size(0), -1)
-        pre_yaw = self.fc_yaw(x)
-        pre_pitch = self.fc_pitch(x)
-        pre_roll = self.fc_roll(x)
-
-        yaw = self.softmax(pre_yaw)
-        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
-        pitch = self.softmax(pre_pitch)
-        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
-        roll = self.softmax(pre_roll)
-        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
-        yaw = yaw.view(yaw.size(0), 1)
-        pitch = pitch.view(pitch.size(0), 1)
-        roll = roll.view(roll.size(0), 1)
-        angles = []
-        preangles = torch.cat([yaw, pitch, roll], 1)
-        angles.append(preangles)
-
-        return pre_yaw, pre_pitch, pre_roll, angles, sr_y
 
 class Hopenet_new(nn.Module):
     # This is just Hopenet with 3 output layers for yaw, pitch and roll.

--
Gitblit v1.8.0