From c13dba86b2dbe581353b72602d7fa6e40991964c Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:11:23 +0800 Subject: [PATCH] next --- /dev/null | 221 ------------------------------------ .gitignore | 3 code/hopenet.py | 90 --------------- 3 files changed, 2 insertions(+), 312 deletions(-) diff --git a/.gitignore b/.gitignore index 8fe1257..ab3731e 100644 --- a/.gitignore +++ b/.gitignore @@ -2,4 +2,5 @@ *.npy data/* output/* -*.jpg \ No newline at end of file +*.jpg +*.png \ No newline at end of file diff --git a/code/hopenet.py b/code/hopenet.py index b2dd097..c6bf0db 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -340,93 +340,3 @@ angles.append(preangles) return pre_yaw, pre_pitch, pre_roll, angles, sr_output - -class Hopenet_LSTM(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins): - self.inplanes = 64 - super(Hopenet_LSTM, self).__init__() - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, - bias=False) - self.bn1 = nn.BatchNorm2d(64) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = nn.AvgPool2d(7) - self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) - self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) - self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - - self.softmax = nn.Softmax() - self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) - - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.lstm = nn.LSTM(512 * block.expansion + 3, 256 * block.expansion, 2, batch_first=True) - self.fc_lstm = nn.Linear(256 * block.expansion, 3) - - self.block_expansion = block.expansion - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d(self.inplanes, planes * block.expansion, - kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - - x = self.conv1(x) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - - x = self.avgpool(x) - x = x.view(x.size(0), -1) - pre_yaw = self.fc_yaw(x) - pre_pitch = self.fc_pitch(x) - pre_roll = self.fc_roll(x) - - # Yaw, pitch, roll - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - preangles = torch.cat([yaw, pitch, roll], 1) - - residuals, _ = self.lstm(torch.cat((preangles, x), 1), (h0, c0)) - residuals = self.fc_lstm(residuals[:, -1, :]) - final_angles = preangles + residuals - - return pre_yaw, pre_pitch, pre_roll, preangles, final_angles diff --git a/code/train_hopenet_lstm.py b/code/train_hopenet_lstm.py deleted file mode 100644 index 7df4708..0000000 --- a/code/train_hopenet_lstm.py +++ /dev/null @@ -1,221 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torchvision -import torch.backends.cudnn as cudnn -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import torch.utils.model_zoo as model_zoo - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', - default=5, type=int) - parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', - default=5, type=int) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=16, type=int) - parser.add_argument('--lr', dest='lr', help='Base learning rate.', - default=0.001, type=float) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) - parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', - default=0.001, type=float) - parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', - default=1, type=int) - parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - args = parser.parse_args() - return args - -def get_ignored_params(model): - # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) - - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - if 'bn' in module_name: - module.eval() - for name, param in module.named_parameters(): - yield param - -def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) - b.append(model.lstm) - b.append(model.fc_lstm) - for i in range(len(b)): - for module_name, module in b[i].named_modules(): - for name, param in module.named_parameters(): - yield param - -def load_filtered_state_dict(model, snapshot): - # By user apaszke from discuss.pytorch.org - model_dict = model.state_dict() - # 1. filter out unnecessary keys - snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(snapshot) - # 3. load the new state dict - model.load_state_dict(model_dict) - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - num_epochs = args.num_epochs - num_epochs_ft = args.num_epochs_ft - batch_size = args.batch_size - gpu = args.gpu_id - - if not os.path.exists('output/snapshots'): - os.makedirs('output/snapshots') - - model = hopenet.Hopenet_LSTM(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(240), - transforms.RandomCrop(224), transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - - if args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'BIWI': - pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW': - pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFLW_aug': - pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'AFW': - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) - else: - print 'Error: not a valid dataset name' - sys.exit() - train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, - shuffle=True, - num_workers=2) - - model.cuda(gpu) - softmax = nn.Softmax() - criterion = nn.CrossEntropyLoss().cuda() - reg_criterion = nn.MSELoss().cuda() - smooth_l1_loss = nn.SmoothL1Loss().cuda() - # Regression loss coefficient - alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, - {'params': get_non_ignored_params(model), 'lr': args.lr}, - {'params': get_fc_params(model), 'lr': args.lr * 5}], - lr = args.lr) - - print 'Ready to train network.' - - print 'Second phase of training (finetuning layer).' - for epoch in range(num_epochs_ft): - for i, (images, labels, cont_labels, name) in enumerate(train_loader): - images = Variable(images.cuda(gpu)) - label_yaw = Variable(labels[:,0].cuda(gpu)) - label_pitch = Variable(labels[:,1].cuda(gpu)) - label_roll = Variable(labels[:,2].cuda(gpu)) - - label_angles = Variable(cont_labels[:,:3].cuda(gpu)) - label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) - label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) - label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) - - optimizer.zero_grad() - model.zero_grad() - - pre_yaw, pre_pitch, pre_roll, preangles, final_angles = model(images) - - # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) - - # MSE loss - yaw_predicted = preangles[0] - pitch_predicted = preangles[1] - roll_predicted = preangles[2] - - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) - loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) - - # Total loss - loss_yaw += alpha * loss_reg_yaw - loss_pitch += alpha * loss_reg_pitch - loss_roll += alpha * loss_reg_roll - - # LSTM loss - loss_seq = [loss_yaw, loss_pitch, loss_rol] - loss_lstm = reg_criterion(final_angles, label_angles) - loss_seq.append(loss_lstm) - - grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - torch.autograd.backward(loss_seq, grad_seq) - optimizer.step() - - if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' - %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') - - # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft: - print 'Taking snapshot...' - torch.save(model.state_dict(), - 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0