From c13dba86b2dbe581353b72602d7fa6e40991964c Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:11:23 +0800
Subject: [PATCH] next

---
 code/test_preangles.py |   78 +++++++++++++++++++-------------------
 1 files changed, 39 insertions(+), 39 deletions(-)

diff --git a/code/test_preangles.py b/code/test_preangles.py
index 67e4744..b742195 100644
--- a/code/test_preangles.py
+++ b/code/test_preangles.py
@@ -33,6 +33,7 @@
           default=1, type=int)
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -43,12 +44,12 @@
 
     cudnn.enabled = True
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -59,15 +60,27 @@
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
-
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'AFLW2000_ds':
+        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
+                                transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=args.batch_size,
                                                num_workers=2)
@@ -79,10 +92,6 @@
     # Test the Model
     model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
     total = 0
-    n_margins = 20
-    yaw_correct = np.zeros(n_margins)
-    pitch_correct = np.zeros(n_margins)
-    roll_correct = np.zeros(n_margins)
 
     idx_tensor = [idx for idx in xrange(66)]
     idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
@@ -93,12 +102,12 @@
 
     l1loss = torch.nn.L1Loss(size_average=False)
 
-    for i, (images, labels, name) in enumerate(test_loader):
+    for i, (images, labels, cont_labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-        total += labels.size(0)
-        label_yaw = labels[:,0].float()
-        label_pitch = labels[:,1].float()
-        label_roll = labels[:,2].float()
+        total += cont_labels.size(0)
+        label_yaw = cont_labels[:,0].float()
+        label_pitch = cont_labels[:,1].float()
+        label_roll = cont_labels[:,2].float()
 
         yaw, pitch, roll, angles = model(images)
 
@@ -112,38 +121,29 @@
         pitch_predicted = utils.softmax_temperature(pitch.data, 1)
         roll_predicted = utils.softmax_temperature(roll.data, 1)
 
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw))
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            if args.dataset == 'BIWI':
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
+            else:
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            if args.batch_size == 1:
+                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
+                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +
     ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
     pitch_error / total, roll_error / total))
-
-    # Binned accuracy
-    # for idx in xrange(len(yaw_correct)):
-    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total

--
Gitblit v1.8.0