From c13dba86b2dbe581353b72602d7fa6e40991964c Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:11:23 +0800 Subject: [PATCH] next --- practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb | 44 ++++++++++++++++++++++++++++---------------- 1 files changed, 28 insertions(+), 16 deletions(-) diff --git a/practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb b/practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb index 6c632b6..856fbb4 100644 --- a/practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb +++ b/practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": { "collapsed": true }, @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": { "collapsed": true }, @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -100,28 +100,21 @@ " face_h = row[8]\n", "\n", " #Error correction\n", - " k = 0.15\n", - " x_min = face_x - image_w * k\n", - " x_max = face_x + image_w * (k+1)\n", - " y_min = face_y - image_h * k\n", - " y_max = face_y + image_h * (k+1)\n", + " k = 0.35\n", + " x_min = face_x - face_w * k * 0.6\n", + " x_max = face_x + face_w + face_w * k * 0.6\n", + " y_min = face_y - face_h * k * 2\n", + " y_max = face_y + face_h + face_h * k * 0.6\n", " \n", " x_min = int(max(0, x_min))\n", " x_max = int(min(image_w, x_max))\n", " y_min = int(max(0, y_min))\n", " y_max = int(min(image_h, y_max))\n", - "\n", - " if(face_w > image_w): \n", - " face_w = image_w\n", - " face_h = image_w\n", - " if(face_h > image_h): \n", - " face_h = image_h\n", - " face_w = image_h\n", " \n", " #Crop the face from the image\n", " image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n", " #Uncomment the lines below if you want to rescale the image to a particular size\n", - " to_size = 260\n", + " to_size = 240\n", " image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n", " #Uncomment the line below if you want to use adaptive histogram normalisation\n", " #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5))\n", @@ -151,6 +144,25 @@ }, { "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "test\n" + ] + } + ], + "source": [ + "print 'test'" + ] + }, + { + "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true -- Gitblit v1.8.0