From c495a0f6b13b794bab9f6e3423d5038ce645d816 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 13 九月 2017 21:12:59 +0800 Subject: [PATCH] Batch testing and hopenet training complete --- code/train.py | 24 code/hopenet.py | 6 code/test_on_video.py | 2 code/batch_testing/batch_testing_AFLW_preangles.py | 147 +++++++++ code/train_AFLW_preangles.py | 265 ++++++++++++++++ code/batch_testing_preangles.py | 158 +++++++++ code/batch_testing.py | 147 +++++++++ code/train_preangles.py | 2 code/test.py | 9 code/test_biwi_preangles.py | 149 +++++++++ 10 files changed, 888 insertions(+), 21 deletions(-) diff --git a/code/batch_testing.py b/code/batch_testing.py new file mode 100644 index 0000000..74ad58b --- /dev/null +++ b/code/batch_testing.py @@ -0,0 +1,147 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +import glob + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', + default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot list.' + # Load snapshot + snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + prefix = args.snapshot_folder.split('/')[-1] + if prefix == '': + prefix = args.snapshot_folder.split('/')[-2] + output_file_name = prefix + '_' + args.dataset + '_angles.txt' + txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w') + + for snapshot_path in snapshot_list: + snapshot_name = snapshot_path.split('/')[-1].split('.')[0] + print 'Loading snapshot ' + snapshot_name + + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[args.iter_ref-1][:,0].cpu().data + pitch = angles[args.iter_ref-1][:,1].cpu().data + roll = angles[args.iter_ref-1][:,2].cpu().data + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll - label_roll) * 3) + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + txt_output.close() diff --git a/code/batch_testing/batch_testing_AFLW_preangles.py b/code/batch_testing/batch_testing_AFLW_preangles.py new file mode 100644 index 0000000..e0c170e --- /dev/null +++ b/code/batch_testing/batch_testing_AFLW_preangles.py @@ -0,0 +1,147 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +import glob + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot list.' + # Load snapshot + snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) + + print 'Loading data.' + + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), transforms.ToTensor()]) + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, + transformations) + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + output_file_name = args.snapshot_folder.split('/')[-1] + '_AFLW_preangles.txt' + txt_output = open(os.join('output/batch_snapshots', output_file_name), 'w') + + for snapshot_path in snapshot_list: + snapshot_name = snapshot_path.split('/')[-1].split('.')[0] + print 'Loading snapshot ' + snapshot_name + + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + txt_output.close() diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py new file mode 100644 index 0000000..11390b0 --- /dev/null +++ b/code/batch_testing_preangles.py @@ -0,0 +1,158 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +import glob + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot list.' + # Load snapshot + snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + prefix = args.snapshot_folder.split('/')[-1] + if prefix == '': + prefix = args.snapshot_folder.split('/')[-2] + output_file_name = prefix + '_' + args.dataset + '_preangles.txt' + txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w') + + for snapshot_path in snapshot_list: + snapshot_name = snapshot_path.split('/')[-1].split('.')[0] + print 'Loading snapshot ' + snapshot_name + + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + txt_output.close() diff --git a/code/hopenet.py b/code/hopenet.py index 5bac804..81e645c 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -41,7 +41,7 @@ class Hopenet(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins): + def __init__(self, block, layers, num_bins, iter_ref): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, @@ -62,6 +62,8 @@ self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + + self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -117,7 +119,7 @@ angles = [] angles.append(torch.cat([yaw, pitch, roll], 1)) - for idx in xrange(1): + for idx in xrange(self.iter_ref): angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1))) return pre_yaw, pre_pitch, pre_roll, angles diff --git a/code/test.py b/code/test.py index b01d07e..ca7a820 100644 --- a/code/test.py +++ b/code/test.py @@ -33,6 +33,7 @@ default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) args = parser.parse_args() @@ -48,7 +49,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -98,9 +99,9 @@ label_roll = labels[:,2].float() pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[0][:,0].cpu().data - pitch = angles[0][:,1].cpu().data - roll = angles[0][:,2].cpu().data + yaw = angles[args.iter_ref-1][:,0].cpu().data + pitch = angles[args.iter_ref-1][:,1].cpu().data + roll = angles[args.iter_ref-1][:,2].cpu().data # Mean absolute error yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) diff --git a/code/test_biwi_preangles.py b/code/test_biwi_preangles.py new file mode 100644 index 0000000..a64dab9 --- /dev/null +++ b/code/test_biwi_preangles.py @@ -0,0 +1,149 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), transforms.ToTensor()]) + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, + transformations) + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_on_video.py b/code/test_on_video.py index b410ea7..8d6c5fd 100644 --- a/code/test_on_video.py +++ b/code/test_on_video.py @@ -141,7 +141,7 @@ img_shape = img.size() img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(gpu) - yaw, pitch, roll = model(img) + yaw, pitch, roll, angles = model(img) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) diff --git a/code/train.py b/code/train.py index ff060af..50eeb82 100644 --- a/code/train.py +++ b/code/train.py @@ -46,6 +46,8 @@ parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) + parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', + default=1, type=int) args = parser.parse_args() return args @@ -111,7 +113,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) @@ -177,14 +179,12 @@ loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - # print yaw_predicted, label_yaw.float(), loss_reg_yaw # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll loss_seq = [loss_yaw, loss_pitch, loss_roll] - # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -226,9 +226,9 @@ pitch_predicted = softmax(pre_pitch) roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) @@ -240,9 +240,11 @@ loss_roll += alpha * loss_reg_roll # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) + loss_seq = [loss_yaw, loss_pitch, loss_roll] + for idx in xrange(args.iter_ref): + loss_angles = reg_criterion(angles[idx], label_angles.float()) + loss_seq.append(loss_angles) - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -255,11 +257,7 @@ # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + if epoch % 1 == 0 and epoch < num_epochs_ft: print 'Taking snapshot...' torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') diff --git a/code/train_AFLW_preangles.py b/code/train_AFLW_preangles.py new file mode 100644 index 0000000..ede3439 --- /dev/null +++ b/code/train_AFLW_preangles.py @@ -0,0 +1,265 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torchvision +import torch.backends.cudnn as cudnn +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import torch.utils.model_zoo as model_zoo + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', + default=5, type=int) + parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', + default=5, type=int) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=16, type=int) + parser.add_argument('--lr', dest='lr', help='Base learning rate.', + default=0.001, type=float) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.00, type=float) + args = parser.parse_args() + return args + +def get_ignored_params(model): + # Generator function that yields ignored params. + b = [] + b.append(model.conv1) + b.append(model.bn1) + b.append(model.fc_finetune) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] + b.append(model.layer1) + b.append(model.layer2) + b.append(model.layer3) + b.append(model.layer4) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_fc_params(model): + b = [] + b.append(model.fc_yaw) + b.append(model.fc_pitch) + b.append(model.fc_roll) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param + +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + # 1. filter out unnecessary keys + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + # 2. overwrite entries in the existing state dict + model_dict.update(snapshot) + # 3. load the new state dict + model.load_state_dict(model_dict) + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + num_epochs = args.num_epochs + num_epochs_ft = args.num_epochs_ft + batch_size = args.batch_size + gpu = args.gpu_id + + if not os.path.exists('output/snapshots'): + os.makedirs('output/snapshots') + + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, + transformations) + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + shuffle=True, + num_workers=2) + + model.cuda(gpu) + softmax = nn.Softmax() + criterion = nn.CrossEntropyLoss().cuda(gpu) + reg_criterion = nn.MSELoss().cuda(gpu) + # Regression loss coefficient + alpha = args.alpha + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) + + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 2}], + lr = args.lr) + + print 'Ready to train network.' + + print 'First phase of training.' + for epoch in range(num_epochs): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # print yaw_predicted, label_yaw.float(), loss_reg_yaw + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + loss_seq = [loss_yaw, loss_pitch, loss_roll] + # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') + + print 'Second phase of training (finetuning layer).' + for epoch in range(num_epochs_ft): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_angles = Variable(labels[:,:3].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + # Finetuning loss + loss_angles = reg_criterion(angles[0], label_angles.float()) + + loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' + %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') + + + # Save the final Trained Model + torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') diff --git a/code/train_preangles.py b/code/train_preangles.py index 65a2017..3179c24 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -134,7 +134,7 @@ criterion = nn.CrossEntropyLoss().cuda() reg_criterion = nn.MSELoss().cuda() # Regression loss coefficient - alpha = 0.00 + alpha = args.alpha idx_tensor = [idx for idx in xrange(66)] idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) -- Gitblit v1.8.0