From c495a0f6b13b794bab9f6e3423d5038ce645d816 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 13 九月 2017 21:12:59 +0800
Subject: [PATCH] Batch testing and hopenet training complete

---
 code/train.py                                      |   24 
 code/hopenet.py                                    |    6 
 code/test_on_video.py                              |    2 
 code/batch_testing/batch_testing_AFLW_preangles.py |  147 +++++++++
 code/train_AFLW_preangles.py                       |  265 ++++++++++++++++
 code/batch_testing_preangles.py                    |  158 +++++++++
 code/batch_testing.py                              |  147 +++++++++
 code/train_preangles.py                            |    2 
 code/test.py                                       |    9 
 code/test_biwi_preangles.py                        |  149 +++++++++
 10 files changed, 888 insertions(+), 21 deletions(-)

diff --git a/code/batch_testing.py b/code/batch_testing.py
new file mode 100644
index 0000000..74ad58b
--- /dev/null
+++ b/code/batch_testing.py
@@ -0,0 +1,147 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+import glob
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
+          default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot list.'
+    # Load snapshot
+    snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl')))
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+                                transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    prefix = args.snapshot_folder.split('/')[-1]
+    if prefix == '':
+        prefix = args.snapshot_folder.split('/')[-2]
+    output_file_name = prefix + '_' + args.dataset + '_angles.txt'
+    txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w')
+
+    for snapshot_path in snapshot_list:
+        snapshot_name = snapshot_path.split('/')[-1].split('.')[0]
+        print 'Loading snapshot ' + snapshot_name
+
+        saved_state_dict = torch.load(snapshot_path)
+        model.load_state_dict(saved_state_dict)
+
+        # Test the Model
+        model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+        total = 0
+        n_margins = 20
+        yaw_correct = np.zeros(n_margins)
+        pitch_correct = np.zeros(n_margins)
+        roll_correct = np.zeros(n_margins)
+
+        idx_tensor = [idx for idx in xrange(66)]
+        idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+        yaw_error = .0
+        pitch_error = .0
+        roll_error = .0
+
+        l1loss = torch.nn.L1Loss(size_average=False)
+
+        for i, (images, labels, name) in enumerate(test_loader):
+            images = Variable(images).cuda(gpu)
+            total += labels.size(0)
+            label_yaw = labels[:,0].float()
+            label_pitch = labels[:,1].float()
+            label_roll = labels[:,2].float()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+            yaw = angles[args.iter_ref-1][:,0].cpu().data
+            pitch = angles[args.iter_ref-1][:,1].cpu().data
+            roll = angles[args.iter_ref-1][:,2].cpu().data
+
+            # Mean absolute error
+            yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
+            pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
+            roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
+            if args.save_viz:
+                name = name[0]
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+                utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+                cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+        print('Test error in degrees of the model on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+        txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+
+    txt_output.close()
diff --git a/code/batch_testing/batch_testing_AFLW_preangles.py b/code/batch_testing/batch_testing_AFLW_preangles.py
new file mode 100644
index 0000000..e0c170e
--- /dev/null
+++ b/code/batch_testing/batch_testing_AFLW_preangles.py
@@ -0,0 +1,147 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+import glob
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot list.'
+    # Load snapshot
+    snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl')))
+
+    print 'Loading data.'
+
+    # transformations = transforms.Compose([transforms.Scale(224),
+    # transforms.RandomCrop(224), transforms.ToTensor()])
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
+                                transformations)
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    output_file_name = args.snapshot_folder.split('/')[-1] + '_AFLW_preangles.txt'
+    txt_output = open(os.join('output/batch_snapshots', output_file_name), 'w')
+
+    for snapshot_path in snapshot_list:
+        snapshot_name = snapshot_path.split('/')[-1].split('.')[0]
+        print 'Loading snapshot ' + snapshot_name
+
+        saved_state_dict = torch.load(snapshot_path)
+        model.load_state_dict(saved_state_dict)
+
+        # Test the Model
+        model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+        total = 0
+        n_margins = 20
+        yaw_correct = np.zeros(n_margins)
+        pitch_correct = np.zeros(n_margins)
+        roll_correct = np.zeros(n_margins)
+
+        idx_tensor = [idx for idx in xrange(66)]
+        idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+        yaw_error = .0
+        pitch_error = .0
+        roll_error = .0
+
+        l1loss = torch.nn.L1Loss(size_average=False)
+
+        for i, (images, labels, name) in enumerate(test_loader):
+            images = Variable(images).cuda(gpu)
+            total += labels.size(0)
+            label_yaw = labels[:,0].float()
+            label_pitch = labels[:,1].float()
+            label_roll = labels[:,2].float()
+
+            yaw, pitch, roll, angles = model(images)
+
+            # Binned predictions
+            _, yaw_bpred = torch.max(yaw.data, 1)
+            _, pitch_bpred = torch.max(pitch.data, 1)
+            _, roll_bpred = torch.max(roll.data, 1)
+
+            # Continuous predictions
+            yaw_predicted = utils.softmax_temperature(yaw.data, 1)
+            pitch_predicted = utils.softmax_temperature(pitch.data, 1)
+            roll_predicted = utils.softmax_temperature(roll.data, 1)
+
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+
+            # Mean absolute error
+            yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+            pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+            roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+
+            if args.save_viz:
+                name = name[0]
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+                utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+                cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+        print('Test error in degrees of the model on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+        txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+
+    txt_output.close()
diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py
new file mode 100644
index 0000000..11390b0
--- /dev/null
+++ b/code/batch_testing_preangles.py
@@ -0,0 +1,158 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+import glob
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot list.'
+    # Load snapshot
+    snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl')))
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+                                transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    prefix = args.snapshot_folder.split('/')[-1]
+    if prefix == '':
+        prefix = args.snapshot_folder.split('/')[-2]
+    output_file_name = prefix + '_' + args.dataset + '_preangles.txt'
+    txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w')
+
+    for snapshot_path in snapshot_list:
+        snapshot_name = snapshot_path.split('/')[-1].split('.')[0]
+        print 'Loading snapshot ' + snapshot_name
+
+        saved_state_dict = torch.load(snapshot_path)
+        model.load_state_dict(saved_state_dict)
+
+        # Test the Model
+        model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+        total = 0
+        n_margins = 20
+        yaw_correct = np.zeros(n_margins)
+        pitch_correct = np.zeros(n_margins)
+        roll_correct = np.zeros(n_margins)
+
+        idx_tensor = [idx for idx in xrange(66)]
+        idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+        yaw_error = .0
+        pitch_error = .0
+        roll_error = .0
+
+        l1loss = torch.nn.L1Loss(size_average=False)
+
+        for i, (images, labels, name) in enumerate(test_loader):
+            images = Variable(images).cuda(gpu)
+            total += labels.size(0)
+            label_yaw = labels[:,0].float()
+            label_pitch = labels[:,1].float()
+            label_roll = labels[:,2].float()
+
+            yaw, pitch, roll, angles = model(images)
+
+            # Binned predictions
+            _, yaw_bpred = torch.max(yaw.data, 1)
+            _, pitch_bpred = torch.max(pitch.data, 1)
+            _, roll_bpred = torch.max(roll.data, 1)
+
+            # Continuous predictions
+            yaw_predicted = utils.softmax_temperature(yaw.data, 1)
+            pitch_predicted = utils.softmax_temperature(pitch.data, 1)
+            roll_predicted = utils.softmax_temperature(roll.data, 1)
+
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+
+            # Mean absolute error
+            yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+            pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+            roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+
+            if args.save_viz:
+                name = name[0]
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+                utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+                cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+        print('Test error in degrees of the model on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+        txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) +
+        ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total,
+        pitch_error / total, roll_error / total))
+
+    txt_output.close()
diff --git a/code/hopenet.py b/code/hopenet.py
index 5bac804..81e645c 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -41,7 +41,7 @@
 
 class Hopenet(nn.Module):
     # This is just Hopenet with 3 output layers for yaw, pitch and roll.
-    def __init__(self, block, layers, num_bins):
+    def __init__(self, block, layers, num_bins, iter_ref):
         self.inplanes = 64
         super(Hopenet, self).__init__()
         self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
@@ -62,6 +62,8 @@
         self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
 
         self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
+
+        self.iter_ref = iter_ref
 
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
@@ -117,7 +119,7 @@
         angles = []
         angles.append(torch.cat([yaw, pitch, roll], 1))
 
-        for idx in xrange(1):
+        for idx in xrange(self.iter_ref):
             angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1)))
 
         return pre_yaw, pre_pitch, pre_roll, angles
diff --git a/code/test.py b/code/test.py
index b01d07e..ca7a820 100644
--- a/code/test.py
+++ b/code/test.py
@@ -33,6 +33,7 @@
           default=1, type=int)
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
 
     args = parser.parse_args()
 
@@ -48,7 +49,7 @@
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -98,9 +99,9 @@
         label_roll = labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[0][:,0].cpu().data
-        pitch = angles[0][:,1].cpu().data
-        roll = angles[0][:,2].cpu().data
+        yaw = angles[args.iter_ref-1][:,0].cpu().data
+        pitch = angles[args.iter_ref-1][:,1].cpu().data
+        roll = angles[args.iter_ref-1][:,2].cpu().data
 
         # Mean absolute error
         yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
diff --git a/code/test_biwi_preangles.py b/code/test_biwi_preangles.py
new file mode 100644
index 0000000..a64dab9
--- /dev/null
+++ b/code/test_biwi_preangles.py
@@ -0,0 +1,149 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+    snapshot_path = args.snapshot
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot.'
+    # Load snapshot
+    saved_state_dict = torch.load(snapshot_path)
+    model.load_state_dict(saved_state_dict)
+
+    print 'Loading data.'
+
+    # transformations = transforms.Compose([transforms.Scale(224),
+    # transforms.RandomCrop(224), transforms.ToTensor()])
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.CenterCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.BIWI(args.data_dir, args.filename_list,
+                                transformations)
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    # Test the Model
+    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+    total = 0
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
+    l1loss = torch.nn.L1Loss(size_average=False)
+
+    for i, (images, labels, name) in enumerate(test_loader):
+        images = Variable(images).cuda(gpu)
+        total += labels.size(0)
+        label_yaw = labels[:,0].float()
+        label_pitch = labels[:,1].float()
+        label_roll = labels[:,2].float()
+
+        yaw, pitch, roll, angles = model(images)
+
+        # Binned predictions
+        _, yaw_bpred = torch.max(yaw.data, 1)
+        _, pitch_bpred = torch.max(pitch.data, 1)
+        _, roll_bpred = torch.max(roll.data, 1)
+
+        # Continuous predictions
+        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
+        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
+        roll_predicted = utils.softmax_temperature(roll.data, 1)
+
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+
+        # Mean absolute error
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+
+        # Binned Accuracy
+        # for er in xrange(n_margins):
+        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
+        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
+        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
+
+        # print label_yaw[0], yaw_bpred[0,0]
+
+        # Save images with pose cube.
+        # TODO: fix for larger batch size
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
+            #print os.path.join('output/images', name + '.jpg')
+            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
+            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+
+    # Binned accuracy
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/test_on_video.py b/code/test_on_video.py
index b410ea7..8d6c5fd 100644
--- a/code/test_on_video.py
+++ b/code/test_on_video.py
@@ -141,7 +141,7 @@
         img_shape = img.size()
         img = img.view(1, img_shape[0], img_shape[1], img_shape[2])
         img = Variable(img).cuda(gpu)
-        yaw, pitch, roll = model(img)
+        yaw, pitch, roll, angles = model(img)
 
         yaw_predicted = F.softmax(yaw)
         pitch_predicted = F.softmax(pitch)
diff --git a/code/train.py b/code/train.py
index ff060af..50eeb82 100644
--- a/code/train.py
+++ b/code/train.py
@@ -46,6 +46,8 @@
     parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
     parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
           default=0.001, type=float)
+    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
+          default=1, type=int)
     args = parser.parse_args()
     return args
 
@@ -111,7 +113,7 @@
     # ResNet101 with 3 outputs
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
     load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
@@ -177,14 +179,12 @@
             loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
             loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
 
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
             loss_pitch += alpha * loss_reg_pitch
             loss_roll += alpha * loss_reg_roll
 
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -226,9 +226,9 @@
             pitch_predicted = softmax(pre_pitch)
             roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
 
             loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
             loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
@@ -240,9 +240,11 @@
             loss_roll += alpha * loss_reg_roll
 
             # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            for idx in xrange(args.iter_ref):
+                loss_angles = reg_criterion(angles[idx], label_angles.float())
+                loss_seq.append(loss_angles)
 
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -255,11 +257,7 @@
                 #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+        if epoch % 1 == 0 and epoch < num_epochs_ft:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
             'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')
diff --git a/code/train_AFLW_preangles.py b/code/train_AFLW_preangles.py
new file mode 100644
index 0000000..ede3439
--- /dev/null
+++ b/code/train_AFLW_preangles.py
@@ -0,0 +1,265 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torchvision
+import torch.backends.cudnn as cudnn
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import torch.utils.model_zoo as model_zoo
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+}
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
+          default=5, type=int)
+    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
+          default=5, type=int)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=16, type=int)
+    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
+          default=0.001, type=float)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
+    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
+          default=0.00, type=float)
+    args = parser.parse_args()
+    return args
+
+def get_ignored_params(model):
+    # Generator function that yields ignored params.
+    b = []
+    b.append(model.conv1)
+    b.append(model.bn1)
+    b.append(model.fc_finetune)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
+    b.append(model.layer1)
+    b.append(model.layer2)
+    b.append(model.layer3)
+    b.append(model.layer4)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_fc_params(model):
+    b = []
+    b.append(model.fc_yaw)
+    b.append(model.fc_pitch)
+    b.append(model.fc_roll)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            for name, param in module.named_parameters():
+                yield param
+
+def load_filtered_state_dict(model, snapshot):
+    # By user apaszke from discuss.pytorch.org
+    model_dict = model.state_dict()
+    # 1. filter out unnecessary keys
+    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
+    # 2. overwrite entries in the existing state dict
+    model_dict.update(snapshot)
+    # 3. load the new state dict
+    model.load_state_dict(model_dict)
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    num_epochs = args.num_epochs
+    num_epochs_ft = args.num_epochs_ft
+    batch_size = args.batch_size
+    gpu = args.gpu_id
+
+    if not os.path.exists('output/snapshots'):
+        os.makedirs('output/snapshots')
+
+    # ResNet101 with 3 outputs
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
+
+    print 'Loading data.'
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
+                                transformations)
+    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=batch_size,
+                                               shuffle=True,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+    softmax = nn.Softmax()
+    criterion = nn.CrossEntropyLoss().cuda(gpu)
+    reg_criterion = nn.MSELoss().cuda(gpu)
+    # Regression loss coefficient
+    alpha = args.alpha
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
+
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
+                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                   lr = args.lr)
+
+    print 'Ready to train network.'
+
+    print 'First phase of training.'
+    for epoch in range(num_epochs):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images.cuda(gpu))
+            label_yaw = Variable(labels[:,0].cuda(gpu))
+            label_pitch = Variable(labels[:,1].cuda(gpu))
+            label_roll = Variable(labels[:,2].cuda(gpu))
+
+            optimizer.zero_grad()
+            model.zero_grad()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+
+            # Cross entropy loss
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
+
+            # MSE loss
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
+
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+
+            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
+            # Total loss
+            loss_yaw += alpha * loss_reg_yaw
+            loss_pitch += alpha * loss_reg_pitch
+            loss_roll += alpha * loss_reg_roll
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
+                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
+
+    print 'Second phase of training (finetuning layer).'
+    for epoch in range(num_epochs_ft):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images.cuda(gpu))
+            label_yaw = Variable(labels[:,0].cuda(gpu))
+            label_pitch = Variable(labels[:,1].cuda(gpu))
+            label_roll = Variable(labels[:,2].cuda(gpu))
+            label_angles = Variable(labels[:,:3].cuda(gpu))
+
+            optimizer.zero_grad()
+            model.zero_grad()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+
+            # Cross entropy loss
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
+
+            # MSE loss
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
+
+            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+
+            # Total loss
+            loss_yaw += alpha * loss_reg_yaw
+            loss_pitch += alpha * loss_reg_pitch
+            loss_roll += alpha * loss_reg_roll
+
+            # Finetuning loss
+            loss_angles = reg_criterion(angles[0], label_angles.float())
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
+                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
+
+
+    # Save the final Trained Model
+    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')
diff --git a/code/train_preangles.py b/code/train_preangles.py
index 65a2017..3179c24 100644
--- a/code/train_preangles.py
+++ b/code/train_preangles.py
@@ -134,7 +134,7 @@
     criterion = nn.CrossEntropyLoss().cuda()
     reg_criterion = nn.MSELoss().cuda()
     # Regression loss coefficient
-    alpha = 0.00
+    alpha = args.alpha
 
     idx_tensor = [idx for idx in xrange(66)]
     idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)

--
Gitblit v1.8.0