From c495a0f6b13b794bab9f6e3423d5038ce645d816 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 13 九月 2017 21:12:59 +0800
Subject: [PATCH] Batch testing and hopenet training complete

---
 code/train.py |   24 +++++++++++-------------
 1 files changed, 11 insertions(+), 13 deletions(-)

diff --git a/code/train.py b/code/train.py
index ff060af..50eeb82 100644
--- a/code/train.py
+++ b/code/train.py
@@ -46,6 +46,8 @@
     parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
     parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
           default=0.001, type=float)
+    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
+          default=1, type=int)
     args = parser.parse_args()
     return args
 
@@ -111,7 +113,7 @@
     # ResNet101 with 3 outputs
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
     load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
@@ -177,14 +179,12 @@
             loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
             loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
 
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
             loss_pitch += alpha * loss_reg_pitch
             loss_roll += alpha * loss_reg_roll
 
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -226,9 +226,9 @@
             pitch_predicted = softmax(pre_pitch)
             roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
 
             loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
             loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
@@ -240,9 +240,11 @@
             loss_roll += alpha * loss_reg_roll
 
             # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            for idx in xrange(args.iter_ref):
+                loss_angles = reg_criterion(angles[idx], label_angles.float())
+                loss_seq.append(loss_angles)
 
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -255,11 +257,7 @@
                 #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+        if epoch % 1 == 0 and epoch < num_epochs_ft:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
             'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0