From cd27a07f60e1896e93554f4e91152e61cf40b2b2 Mon Sep 17 00:00:00 2001 From: Nataniel Ruiz <nruiz9@gatech.edu> Date: 星期一, 04 三月 2019 08:13:56 +0800 Subject: [PATCH] Update README.md --- code/utils.py | 85 ++++++++++++++++++++++++++++++++---------- 1 files changed, 64 insertions(+), 21 deletions(-) diff --git a/code/utils.py b/code/utils.py index 52bfa73..b75d51f 100644 --- a/code/utils.py +++ b/code/utils.py @@ -7,6 +7,40 @@ import math from math import cos, sin +def softmax_temperature(tensor, temperature): + result = torch.exp(tensor / temperature) + result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) + return result + +def get_pose_params_from_mat(mat_path): + # This functions gets the pose parameters from the .mat + # Annotations that come with the Pose_300W_LP dataset. + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll, tdx, tdy] + pose_params = pre_pose_params[:5] + return pose_params + +def get_ypr_from_mat(mat_path): + # Get yaw, pitch, roll from .mat annotation. + # They are in radians + mat = sio.loadmat(mat_path) + # [pitch yaw roll tdx tdy tdz scale_factor] + pre_pose_params = mat['Pose_Para'][0] + # Get [pitch, yaw, roll] + pose_params = pre_pose_params[:3] + return pose_params + +def get_pt2d_from_mat(mat_path): + # Get 2D landmarks + mat = sio.loadmat(mat_path) + pt2d = mat['pt2d'] + return pt2d + +def mse_loss(input, target): + return torch.sum(torch.abs(input.data - target.data) ** 2) + def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) @@ -16,7 +50,6 @@ p = pitch * np.pi / 180 y = -(yaw * np.pi / 180) r = roll * np.pi / 180 - if tdx != None and tdy != None: face_x = tdx - 0.50 * size face_y = tdy - 0.50 * size @@ -50,25 +83,35 @@ return img -def get_pose_params_from_mat(mat_path): - # This functions gets the pose parameters from the .mat - # Annotations that come with the 300W_LP dataset. - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll, tdx, tdy] - pose_params = pre_pose_params[:5] - return pose_params +def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): -def get_ypr_from_mat(mat_path): - # Get yaw, pitch, roll from .mat annotation. - # They are in radians - mat = sio.loadmat(mat_path) - # [pitch yaw roll tdx tdy tdz scale_factor] - pre_pose_params = mat['Pose_Para'][0] - # Get [pitch, yaw, roll] - pose_params = pre_pose_params[:3] - return pose_params + pitch = pitch * np.pi / 180 + yaw = -(yaw * np.pi / 180) + roll = roll * np.pi / 180 -def mse_loss(input, target): - return torch.sum(torch.abs(input.data - target.data) ** 2) + if tdx != None and tdy != None: + tdx = tdx + tdy = tdy + else: + height, width = img.shape[:2] + tdx = width / 2 + tdy = height / 2 + + # X-Axis pointing to right. drawn in red + x1 = size * (cos(yaw) * cos(roll)) + tdx + y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy + + # Y-Axis | drawn in green + # v + x2 = size * (-cos(yaw) * sin(roll)) + tdx + y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy + + # Z-Axis (out of the screen) drawn in blue + x3 = size * (sin(yaw)) + tdx + y3 = size * (-cos(yaw) * sin(pitch)) + tdy + + cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),3) + cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),3) + cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),2) + + return img -- Gitblit v1.8.0