From d285712b1c0a3e0785a4e5b17debdde650a7c26a Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 13 九月 2017 21:34:38 +0800
Subject: [PATCH] Removed hourglass

---
 code/test.py |   22 +++++++++++++++++-----
 1 files changed, 17 insertions(+), 5 deletions(-)

diff --git a/code/test.py b/code/test.py
index b01d07e..f2baf63 100644
--- a/code/test.py
+++ b/code/test.py
@@ -33,6 +33,8 @@
           default=1, type=int)
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -48,7 +50,7 @@
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -63,8 +65,18 @@
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=args.batch_size,
                                                num_workers=2)
@@ -98,9 +110,9 @@
         label_roll = labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[0][:,0].cpu().data
-        pitch = angles[0][:,1].cpu().data
-        roll = angles[0][:,2].cpu().data
+        yaw = angles[args.iter_ref-1][:,0].cpu().data
+        pitch = angles[args.iter_ref-1][:,1].cpu().data
+        roll = angles[args.iter_ref-1][:,2].cpu().data
 
         # Mean absolute error
         yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)

--
Gitblit v1.8.0