From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 14 九月 2017 00:51:53 +0800
Subject: [PATCH] Fixing hopenet

---
 code/test.py |   64 +++++++++++++-------------------
 1 files changed, 26 insertions(+), 38 deletions(-)

diff --git a/code/test.py b/code/test.py
index b9be11e..7f76714 100644
--- a/code/test.py
+++ b/code/test.py
@@ -27,12 +27,14 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
           default='', type=str)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=1, type=int)
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -43,12 +45,12 @@
 
     cudnn.enabled = True
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -59,15 +61,22 @@
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    # transforms.RandomCrop(224), transforms.ToTensor()])
-
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=args.batch_size,
                                                num_workers=2)
@@ -100,44 +109,23 @@
         label_pitch = labels[:,1].float()
         label_roll = labels[:,2].float()
 
-        yaw, pitch, roll = model(images)
-
-        # Binned predictions
-        _, yaw_bpred = torch.max(yaw.data, 1)
-        _, pitch_bpred = torch.max(pitch.data, 1)
-        _, roll_bpred = torch.max(roll.data, 1)
-
-        # Continuous predictions
-        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
-        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
-        roll_predicted = utils.softmax_temperature(roll.data, 1)
-
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+        pre_yaw, pre_pitch, pre_roll, angles = model(images)
+        yaw = angles[args.iter_ref][:,0].cpu().data
+        pitch = angles[args.iter_ref][:,1].cpu().data
+        roll = angles[args.iter_ref][:,2].cpu().data
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
+        print yaw.numpy(), label_yaw.numpy()
+        yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
             cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99)
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +

--
Gitblit v1.8.0