From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 14 九月 2017 00:51:53 +0800
Subject: [PATCH] Fixing hopenet

---
 code/test.py |   22 +++++++++++++++++-----
 1 files changed, 17 insertions(+), 5 deletions(-)

diff --git a/code/test.py b/code/test.py
index ca7a820..7f76714 100644
--- a/code/test.py
+++ b/code/test.py
@@ -34,6 +34,7 @@
     parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
           default=False, type=bool)
     parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -61,11 +62,21 @@
     print 'Loading data.'
 
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=args.batch_size,
                                                num_workers=2)
@@ -99,11 +110,12 @@
         label_roll = labels[:,2].float()
 
         pre_yaw, pre_pitch, pre_roll, angles = model(images)
-        yaw = angles[args.iter_ref-1][:,0].cpu().data
-        pitch = angles[args.iter_ref-1][:,1].cpu().data
-        roll = angles[args.iter_ref-1][:,2].cpu().data
+        yaw = angles[args.iter_ref][:,0].cpu().data
+        pitch = angles[args.iter_ref][:,1].cpu().data
+        roll = angles[args.iter_ref][:,2].cpu().data
 
         # Mean absolute error
+        print yaw.numpy(), label_yaw.numpy()
         yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
         pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
         roll_error += torch.sum(torch.abs(roll - label_roll) * 3)

--
Gitblit v1.8.0