From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 14 九月 2017 00:51:53 +0800
Subject: [PATCH] Fixing hopenet

---
 code/test.py |   91 ++++++++++++++++++++++++++++++++++++---------
 1 files changed, 73 insertions(+), 18 deletions(-)

diff --git a/code/test.py b/code/test.py
index 401e02b..7f76714 100644
--- a/code/test.py
+++ b/code/test.py
@@ -5,6 +5,8 @@
 from torch.utils.data import DataLoader
 from torchvision import transforms
 import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
 
 import cv2
 import matplotlib.pyplot as plt
@@ -12,7 +14,7 @@
 import os
 import argparse
 
-from datasets import AFLW2000
+import datasets
 import hopenet
 import utils
 
@@ -25,10 +27,14 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
-    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
           default='', type=str)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
 
     args = parser.parse_args()
 
@@ -38,11 +44,15 @@
     args = parse_args()
 
     cudnn.enabled = True
-    batch_size = 1
     gpu = args.gpu_id
-    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+    snapshot_path = args.snapshot
 
-    model = hopenet.Simple_CNN()
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
     print 'Loading snapshot.'
     # Load snapshot
@@ -51,12 +61,24 @@
 
     print 'Loading data.'
 
-    transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()])
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.CenterCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = AFLW2000(args.data_dir, args.filename_list,
+    if args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
+                                               batch_size=args.batch_size,
                                                num_workers=2)
 
     model.cuda(gpu)
@@ -65,18 +87,51 @@
 
     # Test the Model
     model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
-    error = .0
     total = 0
-    for i, (images, labels, path) in enumerate(test_loader):
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
+    l1loss = torch.nn.L1Loss(size_average=False)
+
+    for i, (images, labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-        labels = Variable(labels).cuda(gpu)
-        outputs = model(images)
-        _, predicted = torch.max(outputs.data, 1)
         total += labels.size(0)
-        # TODO: There are more efficient ways.
-        for idx in xrange(len(outputs)):
-            error += utils.mse_loss(outputs[idx], labels[idx])
+        label_yaw = labels[:,0].float()
+        label_pitch = labels[:,1].float()
+        label_roll = labels[:,2].float()
 
+        pre_yaw, pre_pitch, pre_roll, angles = model(images)
+        yaw = angles[args.iter_ref][:,0].cpu().data
+        pitch = angles[args.iter_ref][:,1].cpu().data
+        roll = angles[args.iter_ref][:,2].cpu().data
 
-    print('Test MSE error of the model on the ' + str(total) +
-    ' test images: %.4f' % (error / total))
+        # Mean absolute error
+        print yaw.numpy(), label_yaw.numpy()
+        yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
+
+        # Save images with pose cube.
+        # TODO: fix for larger batch size
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+
+    # Binned accuracy
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total

--
Gitblit v1.8.0