From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 00:51:53 +0800 Subject: [PATCH] Fixing hopenet --- code/test.py | 91 ++++++++++++++++++++++++++++++++++++--------- 1 files changed, 73 insertions(+), 18 deletions(-) diff --git a/code/test.py b/code/test.py index 401e02b..7f76714 100644 --- a/code/test.py +++ b/code/test.py @@ -5,6 +5,8 @@ from torch.utils.data import DataLoader from torchvision import transforms import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt @@ -12,7 +14,7 @@ import os import argparse -from datasets import AFLW2000 +import datasets import hopenet import utils @@ -25,10 +27,14 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) args = parser.parse_args() @@ -38,11 +44,15 @@ args = parse_args() cudnn.enabled = True - batch_size = 1 gpu = args.gpu_id - snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + snapshot_path = args.snapshot - model = hopenet.Simple_CNN() + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -51,12 +61,24 @@ print 'Loading data.' - transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()]) + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = AFLW2000(args.data_dir, args.filename_list, + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, + batch_size=args.batch_size, num_workers=2) model.cuda(gpu) @@ -65,18 +87,51 @@ # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - error = .0 total = 0 - for i, (images, labels, path) in enumerate(test_loader): + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - labels = Variable(labels).cuda(gpu) - outputs = model(images) - _, predicted = torch.max(outputs.data, 1) total += labels.size(0) - # TODO: There are more efficient ways. - for idx in xrange(len(outputs)): - error += utils.mse_loss(outputs[idx], labels[idx]) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[args.iter_ref][:,0].cpu().data + pitch = angles[args.iter_ref][:,1].cpu().data + roll = angles[args.iter_ref][:,2].cpu().data - print('Test MSE error of the model on the ' + str(total) + - ' test images: %.4f' % (error / total)) + # Mean absolute error + print yaw.numpy(), label_yaw.numpy() + yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll - label_roll) * 3) + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0