From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 00:51:53 +0800 Subject: [PATCH] Fixing hopenet --- code/test_on_video.py | 26 +++++++++++++++++++++++--- 1 files changed, 23 insertions(+), 3 deletions(-) diff --git a/code/test_on_video.py b/code/test_on_video.py index 4fad440..d384b08 100644 --- a/code/test_on_video.py +++ b/code/test_on_video.py @@ -45,7 +45,9 @@ if not os.path.exists(args.video_path): sys.exit('Video does not exist') - # ResNet50 with 3 outputs. + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -58,7 +60,8 @@ print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor()]) + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) model.cuda(gpu) @@ -79,6 +82,8 @@ fourcc = cv2.VideoWriter_fourcc(*'MJPG') out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, 30.0, (width, height)) + txt_out = open('output/video/output-%s.txt' % args.output_string, 'w') + bbox_file = open(args.bboxes, 'r') frame_num = 1 @@ -95,6 +100,7 @@ out.release() video.release() bbox_file.close() + txt_out.close() sys.exit(0) # Save all frames as they are if they don't have bbox annotation. @@ -104,6 +110,7 @@ out.release() video.release() bbox_file.close() + txt_out.close() sys.exit(0) out.write(frame) frame_num += 1 @@ -113,9 +120,18 @@ out.release() video.release() bbox_file.close() + txt_out.close() sys.exit(0) x_min, y_min, x_max, y_max = int(line[1]), int(line[2]), int(line[3]), int(line[4]) + x_min -= 150 + x_max += 150 + y_min -= 250 + y_max += 100 + x_min = max(x_min, 0) + y_min = max(y_min, 0) + x_max = min(frame.shape[1], x_max) + y_max = min(frame.shape[0], y_max) # Crop image img = frame[y_min:y_max,x_min:x_max] img = Image.fromarray(img) @@ -125,7 +141,7 @@ img_shape = img.size() img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(gpu) - yaw, pitch, roll = model(img) + yaw, pitch, roll, angles = model(img) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) @@ -136,7 +152,10 @@ roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 # Print new frame with cube and TODO: axis + txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted)) utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = 200) + # Plot expanded bounding box + cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0,255,0), 3) out.write(frame) frame_num += 1 @@ -147,6 +166,7 @@ out.release() video.release() bbox_file.close() + txt_out.close() sys.exit(0) out.write(frame) frame_num += 1 -- Gitblit v1.8.0