From dd62d6fa4a85f18a29de009a972f5599b19ec946 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 14 九月 2017 00:51:53 +0800 Subject: [PATCH] Fixing hopenet --- code/train.py | 96 +++++++++++++++++++++++++++--------------------- 1 files changed, 54 insertions(+), 42 deletions(-) diff --git a/code/train.py b/code/train.py index 826793d..6e1ae5b 100644 --- a/code/train.py +++ b/code/train.py @@ -43,6 +43,11 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.001, type=float) + parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', + default=1, type=int) args = parser.parse_args() return args @@ -51,26 +56,37 @@ b = [] b.append(model.conv1) b.append(model.bn1) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] b.append(model.layer1) b.append(model.layer2) b.append(model.layer3) b.append(model.layer4) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. +def get_fc_params(model): b = [] b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) b.append(model.fc_finetune) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org @@ -97,18 +113,14 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) print 'Loading data.' - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), - # transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(250), + transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) @@ -120,17 +132,19 @@ num_workers=2) model.cuda(gpu) + softmax = nn.Softmax() criterion = nn.CrossEntropyLoss().cuda() reg_criterion = nn.MSELoss().cuda() # Regression loss coefficient - alpha = 0.01 + alpha = args.alpha idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 2}], + lr = args.lr) print 'Ready to train network.' @@ -153,13 +167,13 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) @@ -180,13 +194,13 @@ %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') print 'Second phase of training (finetuning layer).' for epoch in range(num_epochs_ft): @@ -208,13 +222,13 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) @@ -226,9 +240,11 @@ loss_roll += alpha * loss_reg_roll # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) + loss_seq = [loss_yaw, loss_pitch, loss_roll] + for idx in xrange(args.iter_ref+1): + loss_angles = reg_criterion(angles[idx], label_angles.float()) + loss_seq.append(loss_angles) - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -238,14 +254,10 @@ %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + if epoch % 1 == 0 and epoch < num_epochs_ft: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0